
1

An Efficient Decoding Algorithm of Matrix Partition
Codes

Feng Chen, Samuel Cheng, Member, IEEE

Abstract—Recently, a multiple Slepian-Wolf Coding method
called Matrix Partition Codes has been introduced. However, no
explicit decoding algorithm has been established so far. In this let-
ter, we propose a two-step decoding algorithm which just needs an
extra one-time preprocessing (O(rsn|D|+r|D| log(|D|)+n2sm)).
To illustrate the efficiency of our algorithm, we analyze the
time complexity of our algorithm, and the results show that the
complexity of our method (O(r log(|D|)+msn)) is exponentially
better than the brute-force search method (O(|F|n|D|msn))).

Index Terms—multiple Slepian-Wolf Coding, Matrix Partition
Codes, Confined-Correlated, decoding.

I. INTRODUCTION

D ISTRIBUTED Source Coding (DSC) refers to separate
compression and joint decompression of multiple cor-

related sources, and it can be illustrated as Figure 1. DSC
started as an information-theoretical problem in the renowned
1973 paper of Slepian and Wolf [1], and their theory is
called Slepian-Wolf (SW) coding. SW coding is a lossless data
compression technique, which encodes each source separately
and decodes jointly. By this, the computation burdens are
shifted from the encoded sides to the decoded side. A large
number of SW coding schemes have been proposed [2], [3].

Syndrome based SW coding is a highly efficient linear
method, and it has been widely used. Wyner is the first who
realized this [4], and took computed syndromes as compressed
sources. Since then, many researchers have been focusing on
this interesting topic [2], [5]. Despite this great progress, most
of them are only concentrating on two sources except for a
few exceptions [6], [7].

In [8], Ma and Cheng introduced a truly lossless multi-
ple SW coding based on syndromes called Hamming Codes
for Multiple Sources (HCMSs), which is a perfect code
solution for Hamming sources. Then in [9], they extended
their input sources from Hamming sources to arbitrary fields,
called Confined-Correlated Sources with Deviation Symmetry
(CCSDS), and introduced Matrix Partition Codes to handle
these sources. Despite this progress, they only showed the
optimality of their codes and did not offer any efficient decod-
ing algorithm. In this paper, we start from the construction of
Partition Matrix Codes to derive a precise decoding algorithm.
To illustrate the efficiency of our algorithm, we will analyze
its running time complexity.

This paper is organized as follows. In section II, we
will review the Confined-Correlated Sources with Deviation

The authors are with the School of Electrical and Computer Engineer-
ing, University of Oklahoma, Tulsa, OK, 74135 USA (email: {achenfengb,
samuel.cheng}@ou.edu).

Fig. 1. Framework of Multiple Distributed Source Coding: each source xi is
encoded separately, and decode them jointly to get x̂i in the common decoder.

Symmetry, and Matrix Partition Codes. In section III, we
will introduce our method, and analyze it in section IV. We
conclude our work in section V.

II. PRELIMINARY

Suppose we have a joint source X = (x1, . . . ,xs) sampled
uniformly from a set S. To compress these sources based on
syndrome coding, we will construct s parity-check matrices
(H1, . . . ,Hs) to get the syndromes (y1, . . . ,ys), i.e.,

Y = (y1, . . . ,ys) = (H1x1, . . . ,Hsxs), (1)

where xi ∈ Fn, Hi ∈ Fmi×n, and yi ∈ Fmi . As mentioned in
section I, a Partition Matrix Code is truly lossless, hence the
function defined by (1) must be injective in domain S. In the
rest of this section, we will briefly introduce the input source
space and parity-check matrices.

If there exists D ⊆ Fn × · · · × Fn, such that

S = {(v, . . . ,v) + δ|v ∈ Fn, δ ∈ D}, (2)

then we call S as the Confined-Correlated Sources with
Deviation Symmetry (CCSSD), and denote it as S(D).

Generally, D can be an arbitrary subset of Fn × · · · × Fn,
however, according to (2), δ and δ + (v, . . . ,v) will result
in the same source tuples in S(D), ∀v ∈ Fn. To reduce this
redundancy, the following constraint is imposed on D,

δ ∈ D ⇒ δ + (v, . . . ,v) /∈ D,∀ non-zero v ∈ Fn. (3)

The above constraint guarantees that S(D) is generated by
the least size D, and

|S| = |F|n|D|. (4)

cf
Highlight

cf
Highlight

cf
Highlight

cf
Highlight

cf
Highlight

cf
Highlight

cf
Highlight

2

Example 1 (Hamming Sources). A Hamming Source S over
F defined by [8]

S = {(v, . . . ,v) + (0, . . . , aej︸ ︷︷ ︸
i items

, . . . ,0)|a ∈ F,

1 ≤ i ≤ s, 1 ≤ j ≤ n},
(5)

which is clearly a CCSDS, where ej is a length-n vector with
all zeros except the jth element being 1. For s ≥ 3, D can be
simply chosen as

D = {(0, . . . , aej︸ ︷︷ ︸
i items

, . . . ,0)|a ∈ F, 1 ≤ i ≤ s, 1 ≤ j ≤ n}, (6)

and have

|S| = |F|n(1 + s(|F| − 1)n) for finite F. (7)

For the parity-check matrices, we can construct them by the
following theorem [9].

Theorem 1. Let P be an r × sn matrix (r ∈ Z+) over F s.t.

P|D̃ is one to one, (8)

where
D̃ = {(dT

1 . . .d
T
s)

T|(d1, . . . ,ds) ∈ D}. (9)

Suppose P can be partitioned into

P = [Q1| . . . |Qs] s.t. Q1 + · · ·+Qs = 0, (10)

where all Qi are r× n matrices. Then, for any matrix T that
Q1

...
Qs

T

 (11)

forms an injective matrix, we let Gi(1 ≤ i ≤ s) be a row
partition of T, i.e.

T =

G1

...
Gs

 . (12)

Parity Check (encoding) matrices (H1, . . . ,Hs) with

null(Hi) = null

(
Gi

Qi

)
(13)

form a compression that name Matrix Partition Codes.

Remark 1. One may take Hi as a row basis matrix of
(
Gi

Qi

)
to increase compression, i.e.

Hi = Ui

(
Gi

Qi

)
, (14)

where Ui is an arbitrary invertible matrices with appropriate
sizes for all i.

III. PROPOSED METHOD

For a Matrix Partition Code (H1, . . . ,Hs) defined by The-
orem 1 and the source space defined by (2), we will derive
how to use Y to estimate X explicitly.

For simplicity, we will derive our method for the special

case when Hi =

(
Gi

Qi

)
, and will point out how it works for

the general case (cf. Remark 1) by the end of this section.
Our algorithm can be divided into two steps: the first step is

to find δ̂ in (2), the second step is to solve v̂, and the final step
is to combine them to get X̂. We summarize the overall steps
in Algorithm 1. In the rest of this section, we will explain our
algorithm in detail.

Suppose xi = v + di, where i = 1, · · · , s. According to
(1), we have

y = y1 + · · ·+ ys

= H1x1 + · · ·+Hsxs

=

(
G1

Q1

)
x1 + · · ·+

(
Gs

Qs

)
xs.

(15)

Let y′i denotes the column vector containing the last r
coefficients of yi, by (15), we have

y′ = y′1 + · · ·+ y′s
= Q1x1 + · · ·+Qsxs

= (Q1, . . . ,Qs)

v + d1

...
v + ds

a
= (Q1 + · · ·+Qs)v +P

d1

...
ds

b
= P

d1

...
ds

 = Pδ̃,

(16)

where

δ̃ =

d1

...
ds

 , (17)

and steps (a) and (b) follow from (10). In (16), d1, . . . ,ds are
unknown variables. Since P|D̃ is invertible (generally P|Fsn

is not invertible), it seems we could solve linear (16) directly.
However, because the structure of D is unknown, so it is
generally difficult to solve (16) directly. To remedy this, we
establish a solution table: the table maps all the elements δ̃ ∈ D̃
to their y′ according to (16); moreover, we use the divide-and-
conquer algorithm [10, chp. 4] to sort this table, and the order
is determined by the value of y′i (i = 1, . . . , |D̃|). Because y′i
is a vector, we first sort y′i by their first elements (scalars),
and if they are equal, then sort by their second elements, and
so on so forth.

Once we compute y′, we can solve (16) by the sorted
table. We will use the binary search algorithm [10, chp. 2]

cf
Highlight

cf
Highlight

3

Algorithm 1 Decoding algorithm for Matrix Partition Codes:
recover (x̂1, . . . , x̂s) by syndromes (y1, . . . ,ys).
Construct solution table according to (16) :

• Generate the set {(δ̃k,y′k)|y′k = Pδ̃k,∀ δ̃k ∈ D̃}.
• Use the divide-and-conquer algorithm to sort the ele-

ments of above set according to the value of y′k, and
establish the solution table.

Inputs: y1, . . . ,ys.
Solve (16) :

• Compute the summation: y′ =
s∑

i=1

yi.

• Use the binary search algorithm to look up y′ in the
solution table, and obtain its corresponding value of δ̃,
and d̂i(i = 1, . . . , s).

Find the solution for v :
• Substitute ŷi and d̂i(i = 1, . . . , s) into (19).
• Solve v̂ by (20).

Compute the input source :x̂i = v̂ + d̂i.
Output: (x̂1, . . . , x̂s).

for searching, and because P|D̃ is a one to one mapping, so
for each y′, we can find a unique record in this sorted table,
and then obtain the solution δ̃, hence we obtain (d̂1, . . . , d̂s).

After (d̂1, . . . , d̂s) is known, we can compute v̂. First, let’s
rewrite (1) in a vectorized formy1

...
ys

 =

H1x1

...
Hsxs

 =

H1(v + d̂1)
...

Hs(v + d̂s)

 . (18)

After simple transforms, we havey1 −H1d̂1

...
ys −Hsd̂s

 =

H1

...
Hs

v = Hv. (19)

From Theorem 1, we know H is an injective matrix, so it
has a unique solution. We can solve (18) by

v̂ = (HTH)−1HT

y1 −H1d̂1

...
ys −Hsd̂s

 . (20)

Finally, we obtain the codes

(x̂1, . . . , x̂s) = v̂ + (d̂1, . . . , d̂s). (21)

Remark 2. If Hi takes the general form as (14), then we
need first left multiply yi by U−1i , i.e. ỹi = U−1i yi and use
ỹi instead of yi in the following steps.

We will illustrate our method explicitly in this next example.

Example 2. (Generalized Hamming Code): F = Z5, a =
1, n = 6, s = 4:

H1 = Q1 =

(
1 0 1 1 2 2
0 1 1 2 3 4

)
,

H2 = Q2 =

(
4 0 2 4 2 4
0 2 2 3 1 1

)
,

H3 = Q3 =

(
2 0 3 1 3 1
0 4 3 3 2 4

)
,

H4 = Q4 =

(
3 0 4 4 3 3
0 3 4 2 4 1

)
.

(22)

The matrix P = [Q1|Q2|Q3|Q4] consists of all nonzero
vectors of F2 without repetition.

If the codeword is

(y1 y2 y3 y4) =

((
0
2

)(
3
4

)(
3
2

)(
0
0

))
, (23)

we have

y′ = y1 + y2 + y3 + y4 =

(
1
3

)
. (24)

By searching the solution table, we find the solution δ, i.e.
d̂1, d̂2, d̂3, d̂4, that is equal to

d̂1, d̂2, d̂3 = (0, 0, 0, 0, 0, 0)T, d̂3 = (0, 0, 0, 1, 0, 0)T. (25)

Then according to (19), we can obtain the equations

1 0 1 1 2 2
0 1 1 2 3 4
4 0 2 4 2 4
0 2 2 3 1 1
2 0 3 1 3 1
0 4 3 3 2 4
3 0 4 4 3 3
0 3 4 2 4 1

v =

0
2
3
4

3− 1
2− 3
0
0

, (26)

and then compute

v = (0 3 2 3 4 1)
T (27)

by (20).
Finally, we have

(x1 x2 x3 x4) =

0
3
2
3
4
1

0
3
2
3
4
1

0
3
2
4
4
1

0
3
2
3
4
1

 (28)

from the (21).

Note that above computations are implemented in field Z5.
In the following section, we will analyze the complexity of

our algorithm.

cf
Highlight

cf
Highlight

4

IV. COMPLEXITY ANALYSIS OF OUR METHOD

For the simplicity of analysis, we assume that
1) Scalar addition, multiplication, and comparison con-

sume a same unit time called an operation.
2) Each Hi in (14) has the same size m × n, i.e. Hi ∈

Fm×n.
3) The process of computation is ordinary, which means

no tricky algorithm has been taken. Take n square
matrix mutiplication for instance, its complexity is
O(n3) for ordinay computation, but according to [11],
its complexity can be bounded by O(n2.3727).

We will first estimate the complexity of the brute-force
search method. This method may test all the sources in S(D)
to check if any of them satisfy a set of linear equations in
(1). To test if each equation yi = Hixi in (1) is satisfied, the
following computations are needed:
• Since Hi ∈ Fm×n, and xi ∈ Fn, hence we need m× n

multiplications plus m × (n − 1) additions to compute
Hixi.

• Because yi ∈ Fm, at most m scalar comparisons may
be implemented to test if yi is equal to Hixi.

Hence it takes at most [mn + m(n − 1) + m] = 2mn
operations to test if an n-tuples satisfies a linear equation in
(1), which is bounded by O(mn). Because there are actually
s equations in (1), and the size of the source space is |F|n|D|,
hence the complexity of the brute-force method is bounded by
O(|F|n|D|msn).

For our algorithm, we need an extra one-time preprocessing
step, i.e,
• Generating the set: {(δ̃k,y′k)|y′k = Pδ̃k,∀ δ̃k ∈
D̃, k = 1, . . . , |D̃|}. Similar to the previous analysis,
its complexity is bounded by O(rsn|D̃|) = O(rsn|D|)
(P ∈ Fr×sn).

• Sorting the above set by y′: because the divide-and-
conquer algorithm takes complexity O(n log n) (assume
the complexity of basic comparison is O(1)) to sort a
set, where n is the size of the set [10, chp. 4]. For our
algorithm, the complexity of the basic comparison is
O(r) due to y′ ∈ Fr, hence the complexity of sorting
this set is O(r|D| log(|D|)).

• Computing (HTH)
−1

HT (H ∈ Fsm×n) in (20): its
complexity is bounded by O(n2sm).

So the overall complexity of the one-time preprocessing step
is O(rsn|D|+ r|D| log(|D|) + n2sm).

Next, we will analyze the decoding complexity.
• Solving (16): applying the binary search algorithm for

searching the solution in the sorted table has the com-
plexity of O(r log(|D|)) (The complexity of the binary
search algorithm is log n, and y′ ∈ Fr).

• Substituting (d̂1, . . . , d̂s) into (20): O(msn).
• Estimating v̂ from (20): O(msn).
• Combining (d̂1, . . . , d̂s) and v̂ to get (x̂1, . . . , x̂s)

((21)): O(sn).
So the decoding complexity is O(r log(|D|)+2msn+sn) =

O(r log(|D|)+msn), which is only a fraction of that required
by the brute-force search method O(|F|n|D|msn)).

One may notice that our method needs to set up a |D|-
size table, which consumes an extra space. However, to make
the P|D̃ (cf. Theorem 1) to be invertible, D should not be
larger than |Fr|, where r is the length of each source data.
Further, if we know the exact structure of D, we may design
a more optimized algorithm that maintains a good balance
between space and speed. Take the special case of HCMSs
for instance. Since only one non-zero scalar is contained in
δ (cf. Example 1), hence for the first step of the algorithm,
we need only to find which column of P corresponds with the
nonzero element, whose complexity is O(rsn) (P has the size
of r × sn). Therefore, the overall complexity for the HCMSs
is O(rsn+msn) = O(msn) (m ≥ r) which shows both good
speed and memory saving.

V. CONCLUSION

This letter focuses on the decoding algorithm of Partion
Matrix Codes which take Confined-Correlated Source with
Deviation Symmetry as input. We start from the basic prop-
erties of that coding method, and obtain the analyzed solution
for the source. Based on the results, we propose a two-step
algorithm. For the first step, we set up a sorted table to search
the solution in space D, and the second step is to solve a linear
equation. Finally, we analyze the computational complexity
of our algorithm and compare it with the brute-force search
method. The results indicate the efficiency of our algorithm.

In the future, we will design more codes beyond Generalized
Hamming Sources and try to apply this code for the joint
Gaussian distribution.

REFERENCES

[1] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” Information Theory, IEEE Transactions on, vol. 19, no. 4, pp.
471–480, 1973.

[2] S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (discus): design and construction,” in Data Compression
Conference, 1999. Proceedings. DCC ’99, 1999, pp. 158–167.

[3] ——, “Generalized coset codes for distributed binning,” Information
Theory, IEEE Transactions on, vol. 51, no. 10, pp. 3457–3474, 2005.

[4] A. Wyner, “Recent results in the shannon theory,” Information Theory,
IEEE Transactions on, vol. 20, no. 1, pp. 2–10, 1974.

[5] J. Garcia-Frias and Y. Zhao, “Near-shannon/slepian-wolf performance
for unknown correlated sources over awgn channels,” Communications,
IEEE Transactions on, vol. 53, no. 4, pp. 555–559, 2005.

[6] V. Stankovic, A. Liveris, Z. Xiong, and C. Georghiades, “On code de-
sign for the slepian-wolf problem and lossless multiterminal networks,”
Information Theory, IEEE Transactions on, vol. 52, no. 4, pp. 1495–
1507, 2006.

[7] S. Cheng and R. Ma, “The non-existence of length-5 perfect slepian-
wolf codes of three sources,” in Data Compression Conference (DCC),
2010, 2010, pp. 528–528.

[8] R. Ma and S. Cheng, “The universality of generalized hamming code
for multiple sources,” Communications, IEEE Transactions on, vol. 59,
no. 10, pp. 2641–2647, 2011.

[9] ——, “Zero-error slepian-wolf coding of confined correlated sources
with deviation symmetry,” Arxiv preprint arXiv:1308.0632, 2013.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[11] V. V. Williams, “Multiplying matrices faster than coppersmith-
winograd,” in Proceedings of the 44th symposium on Theory of Comput-
ing, ser. STOC ’12. New York, NY, USA: ACM, 2012, pp. 887–898.

cf
Highlight

cf
Highlight

