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The Non-existence of Length-5 Perfect
Slepian-Wolf Codes of Three Sources

Samuel Cheng and Rick Ma

Abstract—We consider Slepian-Wolf coding of multiple sources
and extend the packing bound and the notion of perfect code
from conventional channel coding to SW coding with more than
two sources. Moreover, we show that there does not exist perfect
Slepian-Wolf code of length-5 for three sources.

Index Terms—Slepian-Wolf coding, distributed source coding,
perfect code

I. INTRODUCTION

Despite the renewed interest of practical implementation of
Slepian-Wolf (SW) coding [1], most work is restricted to the
discussion of two sources [2]–[6] except very few exceptions
[7], [8]. In this paper, we consider SW coding of multiple
sources. In particular, we will show that a perfect length-5
SW codes of three sources does not exist.

SW coding refers to lossless distributed compression
of correlated sources. Consider N correlated sources
X1, X2, · · · , XN . Assuming that encoding can only be per-
formed separately that N encoders can see only one of the
N sources but the compressed sources are transmitted to a
base station and decompressed jointly. To the surprise to many
researchers of their time, Slepian and Wolf showed that it is
possible to have no loss in sum rate under this constrained
situation [1]. That is, at least in theory, it is possible to recover
the source losslessly at the base station even though the sum
rate is barely above the joint entropy H(X1, X2, · · · , XN ).

Wyner is the first who realized that by taking computed
syndromes as the compressed sources, error-correcting parity
check codes can be used to implement SW coding [9]. The
approach was rediscovered and popularized by Pradhan et
al. more than two decades later [2], where the scheme is
restricted to two correlated sources with one of them treated
as side information. In this paper, we generalize this idea
to SW coding for any number of correlated sources and
extend the packing bound and the notion of perfect code from
conventional channel coding to SW coding with more than two
sources. In particular, we will show that while perfect length-5
SW codes of 3 sources are suggested from the packing bound,
such code does not exist.

II. GENERAL SYNDROME BASED SW CODING

We will start with a general definition of syndrome based
SW codes as follows.

Definition 1 (Syndrome based SW code). A rate
(r1, r2, · · · , rN ) syndrome based SW code for N correlated
length-n sources contains N parity check matrices

H1, H2, · · · , HN of sizes m1 × n,m2 × n, · · · ,mN × n,
where ri = mi/n for i = 1, 2, · · · , N .
• Encoding: The ith encoder compresses length-n input xi

into yi = Hixi and transmit the compressed mi bits
(with compression rate ri = mi/n) to the base station

• Decoding: Upon receiving all yi, the base station decodes
all sources by outputting a most probable x̂1, x̂2, · · · , x̂N

that satisfies Hix̂i = yi, i = 1, 2, · · · , N .

The definitions above include all prior syndrome SW coding
approaches as special cases. For example, the syndrome based
asymmetric SW setup is a special case of our syndrome based
SW code when N = 2 and one of the parity check matrices
is set to be an identity matrix.

Definitions 1 do not explain how decoding is performed.
Indeed, the SW code defined above can be overly optimistic
that no decoding algorithm will be able to recover the sources
losslessly. Of course, the required rates will depend on the
correlation among the sources. It is expected that the more
correlated the sources are and the lower the rates ri are
needed (higher compression is possible). In general, the entire
statistics of the sources are completely captured by the joint
probability p(x1, x2, · · · , xN ) if we further restrict our sources
to be memoryless.

To simplify the language, we will call a possible input to
a SW code, i.e., any N -tuple of length-n discrete vectors, as
an (N,n)-configuration, or simple a configuration. Moreover,
while a configuration is really an N -tuple of binary vectors,
without introducing much confusion, we will also refer a
configuration as a code vector. More precisely, we have the
following definitions.

Definition 2 (Code vector). For a syndrome based SW code
defined by H1, H2, · · · , HN , we call N -tuple of length-n
binary vectors a configuration x1,x2, · · · ,xN as a code vector
with a syndrome s1, s2, · · · , sN if Hixi = si, i = 1, · · · , N .

Definition 3 (Code word). In particular, we call a code vector

with the all-zero syndrome

N︷ ︸︸ ︷
0, · · · ,0, x1,x2, · · · ,xN , as a

codeword.

Further, let us define a compressible set and a compressible
configuration in the following sense.

Definition 4 (Compressible set and compressible configura-
tion). The compressible set of a syndrome based SW code
contains all configurations that can be recovered losslessly by
the SW decoder. And we call a configuration to be compress-
ible by the given SW code if it lies within the compressible
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set.

The following propositions are apparent from the definition.

Proposition 1. All compressible vectors have different syn-
dromes from the others.

Proposition 2. The size of compressible set equal to 2
PN

i=1 mi .

Proof: Each compressible vector is identified by a unique
syndrome, and there are 2

PN
i=1 mi syndromes in total.

A syndrome based SW code is really a natural extension of
linear block codes. We can see that the “linearity” of the code
is preserved: if both x1,x2, · · · ,xN and x′1,x′2, · · · ,x′N
are codewords, the sum x1 + x′1,x2 + x′2, · · · ,xN + x′N
is also a codeword. Further, we have the following almost
trivial lemma.

Lemma 1. If both x1,x2, · · · ,xN and x′1,x
′
2, · · · ,x′N are

code vectors with the same syndrome and x̃1, x̃2, · · · , x̃N is
a code vector with syndrome s̃1, s̃2, · · · , s̃N , then x̃1 + x′1 −
x1, x̃2 + x′2 − x2, · · · , x̃N + x′N − xN is a code vector of
syndrome s̃1, s̃2, · · · , s̃N .

Proof: Since x1,x2, · · · ,xN and x′1,x
′
2, · · · ,x′N have

the same syndrome, Hixi = Hix′i,∀i. Therefore, Hi(x̃i +
x′i − xi) = Hix̃ = s̃i.

Despite the simplicity of Lemma 1, it is very important as it
implies that every code vector sees the same code distribution
(distribution of neighbors with the same syndrome) as any
other code vector. As the effectiveness of a code will depend
on the correlation model of the source, before proceeding
further, we will give a precise symmetry definition for a
correlation model considered in this paper1.

Definition 5 (Symmetric correlation). We call a correlation
model specified by the joint probability p(x1, x2, · · · , xN ) as
symmetric if p(x1, x2, · · · , xN ) = pc1(x1,x2,··· ,xN ), where
c1(x1, x2, · · · , xN ) =

∑N
i=1 ι(xi = 1) counts the number of

ones in x1, · · · , xN and ι(· · · ) is the indicator function that
is equal to one if the argument is true and zero otherwise.

Definition 6 (Strictly symmetric correlation). A symmetric
correlation model is strictly symmetric if pi = pN−i, where
pi is defined in the previous definition.

Strictly symmetric condition essentially ensures that each
source is “equally important” statistically and the prior prob-
abilities satisfiies pX(0) = pX(1). We will focus ourselves
to strictly symmetric case from now on. To further sim-
plify the language, let us call x1, x2, · · · , xN as a type-
k (k ≤ bN/2c) correlation if c1(x1, x2, · · · , xN ) = k or
c1(x1, x2, · · · , xN ) = N −k. For a strictly symmetric source,
we will define the profile of a configuration as the empirical
distribution of different correlation type in the configuration.
And immediately, we have a simple lemma that is self-evident.

Definition 7 (Profile). A profile of an (N,n)-configuration
for a strictly symmetric source is a length-bN/2c + 1 vector
that the kth component equal to the number of type kth

correlations in the configuration.

1Note that the symmetry of a correlation defined here is quite different
from that of a channel [10].

Lemma 2. If the correlation of a source is strictly symmetric,
any two configurations of the same profile will have same
probability of occurrence.

Corollary 1. If a source is strictly symmetrically correlated,
then a configuration χ will have the same probability of that
of χ+χ0, where χ0 is a configuration with type-0 correlation
only.

Proof: Note that both χ and χ+χ0 have the same profile
and thus the probabilities of occurrence are the same from
Lemma 2.

For a typical application such as sensor networks,
x1, · · · , xN are highly correlated and we expect the probability
of type-k correlation decreases as k increases up to N/2.
Therefore, we may want to design a code such that it can
compress all configurations with all type-0 correlation except
up to a certain number of type-k′ correlation, 0 < k′ ≤ k.
Through simple counting, we have a sphere packing bound
analogous to that of conventional error correcting codes.

Lemma 3. If a code C can compress all configurations with
t or less type-k′ correlations, 0 < k′ ≤ k < dN/2e-
1, (and n − t or more type-0 correlations,) then 2Nn ≥
|C|2n

∑t
t′=0

[(
n
t′

) [∑k
k′=1

(
N
k′

)]t′]
, where |C| denotes the car-

dinality of C equal to the total number of codewords. For
the special case when N is even and k = N/2, if a code C
can compress configurations with up to t type-k′ correlations,
k′ ≤ k, (and n − t or more type-0 correlations,) then
2Nn ≥ |C|2n

∑t
t′=0

[(
n
t′

) [
2N−1 − 1

]t′]
.

Proof: The number of configurations with n − t type-
0 correlations and t type-k′ correlations, 0 < k′ ≤ k, is(
n
t

)
2n−t

[∑k
k′=1

(
N
k′

)
+
(

N
N−k′

)]t
. Therefore, the total number

of code vectors with up to t type-k′ correlations, k′ ≤ k, is

2n
∑t

t′=0

[(
n
t′

) [∑k
k′=1

(
N
k′

)]t′]
and by Proposition 2, it has

to be less than the number representable by the total number
of syndromes, which is 2Nn/|C|. The proof for special cases
when N is even and k = N/2 are similar and hence omitted.

Analogous to conventional error correcting codes, a perfect
code is defined as a code that achieves the packing bound
specified by Lemma 3.

Example 1. For N = 2 and n = 7, the codes that can
compress all configurations up to 1 bit difference (i.e., all type-
0 correlations except no more than one type-1 correlation)
satisfies 22n ≥ |C|2n

∑1
t′=0

(
n
t′

)
= |C|2n(1 + n). That

means that the code should at least has log2(22n/|C|) ≥
log2(2n(1 + n)) = 10 syndrome bits. Such perfect codes y
can be constructed based on (7, 4)-Hamming code, where the
10 syndrome bits that can be leveraged over the two encoders

[3], [8]. For example, H1 =

[
1000000
0100000
0010100
0011010
0011001

]
and H2 =

[
0010000
0001000
1100100
0100010
1000001

]
when both encoders compress the source symmetrically from
7 bits to 5 bits (and hence 10 bits in total).

Example 2. For N = 3 and n = 5, Lemma 3
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concludes that a code that can compress all configu-
rations up to one type-1 correlation needs to satisfy

23n ≥ |C|2n
∑1

t′=0

[(
n
t′

) [∑1
k′=1

(
3
k′

)]t′]
= |C|2n(1 +

3n). Therefore, the total number of syndrome bits needed
log2(23n/|C|) ≥ log2(2n(1 + 3n)) = log2(29) = 9 bits. It
suggests that a perfect code of length 5 that compresses 15
input bits into 9 bits in total is possible. However, as will be
shown in the next section, such perfect code does not exist.

III. MAIN RESULT

Proposition 3. There does not exist length-5 perfect SW code
of three sources.

Proof: A length-5 SW code that can potentially compress
all configurations up to one type-1 correlation into 9 bits in
total is suggested in Example 2. Let us denote S as the set
containing all these configurations.

Let H1, H2, H3 be the three parity check matrices. Our
strategy is to limit the null spaces of them by the fact
that all elements in S need to have distinct syndromes. The
limitation will eventually kill the possibility of the existence
of H1, H2, H3.

Denote the null set of a matrix A as null(A) = {u|Au = 0},
where 0 is an all zero vector. Further, denote ei as the length-5
binary column vector that has ith component equal to 1 and
the rest of its components equal to zero.

We may assume the number of row in H1 is smaller
than or equal to the other’s. In other words, H1 has at
most 3 rows. Hence null(H1) has at least two degrees of
freedom. Regardless the values of H2 and H3, null(H1) cannot
contain any ei. Otherwise, both (ei,0,0) and (0,0,0) that
are in S will get the same outputs (y1,y2,y3) = (0,0,0).
Similarly, null(H1) cannot contain ei + ej neither, other-
wise both (ei,0,0) and (ej ,0,0) (in S) will get the same
outputs because H1ei = H1ej . Thus null(H1) can only be
span(ei +ej +ek, ei +em +en), where the letters i, j, k,m, n
are different to each others. i.e. null(H1) = {0, ei + ej +
ek, ei+em+en, ej+ek+em+en} for some i, j, k,m, n. Other
structures such as higher dimension will contain forbidden
elements. As the dimension of the null spaces of 1 × 5 and
2 × 5 matrices are all greater than 2, H1 has to have at
least 3 rows. Thus both H2 and H3 also have three rows.
It excludes the possibility of perfect asymmetric SW codes (at
rate [2/5, 3/5, 4/5], for example). So we can focus only on
the symmetric case from now on.

From the above discussion, null(H1) has to contain 0, two
“3e” vectors and one “4e” vector, and no more. Similarly,
null(H2) and null(H3) get the same structure.

Without lose of generality, we can write null(H1) =
{0, e1 + e2 + e3, e1 + e4 + e5, e2 + e3 + e4 + e5}. Suppose
null(H2) contain e1 + e2 + e3, then of course null(H3)
cannot contain e1 + e2 + e3. Otherwise, (0,0,0) ∈ S
and (e1 + e2 + e3, e1 + e2 + e3, e1 + e2 + e3) ∈ S
get the same output (0,0,0). But null(H3) cannot contain
ei + ej + ek, i, j ∈ {1, 2, 3}; k ∈ {4, 5} (i 6= j). Otherwise
(e1 + e2 + e3, e1 + e2 + e3, ei + ej) ∈ S and (0,0, ek) ∈ S
share the same output as well. So the “3e” vectors of null(H3)

can only be two of e1+e4+e5, e2+e4+e5, and e3+e4+e5.
Unfortunately, any pair of them sum up to a “2e” vector instead
of a “4e” vector. Therefore, there cannot be a common “3e”
vector shared between any pair of the null spaces of H1, H2,
and H3.

Now, suppose null(H2) contains the same “4e” vector e2 +
e3 + e4 + e5 as null(H1) does. Then null(H3) cannot contain
any “4e” vector. Let the “4e” vector of null(H3) be e1 +e2 +
e3 + e4 + e5 − ej , j ∈ {2, 3, 4, 5}. Then (e2 + e3 + e4 +
e5, e2 + e3 + e4 + e5, [1, 1, 1, 1, 1]T ) and (0,0, ej) shares the
same syndrome. Thus, any pair of null spaces of H1, H2, and
H3 cannot share a common “4e” vector as well.

Hence, without loss of generality, we can write null(H2) =
{0, e2 + e1 + e4, e2 + e3 + e5, e1 + e3 + e4 + e5}. Then,
there are only three different possibilities for the “4e” vector
of null(H3):

1) e1 + e2 + e4 + e5;
2) e1 + e2 + e3 + e5;
3) e1 + e2 + e3 + e4.
Case 1 does not work because (e1 + e4 + e5, e1 + e3 +

e4 +e5, e1 +e4 +e5) ∈ S and (0,0, e2) ∈ S shares the same
syndrome.

Case 2 does not work neither because (e1 + e2 + e3, e1 +
e2 +e3 +e5, e1 +e2 +e3 +e5) ∈ S and (0, e1,0) ∈ S share
the same syndrome.

Finally, case 3 fails as well since (e1 + e2 + e3, e1 + e2 +
e3 + e4, e1 + e2 + e3 + e4) ∈ S and (0, e3,0) ∈ S share the
same syndrome.

IV. CONCLUSION

We generalized the syndrome based approach of SW coding
to more than two sources and showed the packing bound as
an extension of that in channel coding. We naturally extended
the definition of perfect code as a SW code that satisfies the
SW packing bound and pointed out SW perfect code example
originated from [3]. While the packing bound suggests that
there may exist a length-5 perfect SW code for 3 sources, we
showed that that no such SW code exists.

REFERENCES

[1] D. Slepian and J. Wolf, “Noiseless coding of corre-
lated information sources,” IEEE Trans. Inform. Theory,
vol. 19, pp. 471–480, Jul. 1973.

[2] S. S. Pradhan and K. Ramchandran, “Distributed source
coding using syndromes (discus): design and construc-
tion,” in Proc. DCC, 1999, pp. 158–167.

[3] D. Schonberg, K. Ramchandran, and S. S. Pradhan,
“Distributed code constructions for the entire Slepian-
Wolf rate region for arbitrarily correlated sources,” in
Data Compression Conference, 2004. Proceedings. DCC
2004, 2004, pp. 292–301.

[4] B. Rimoldi and R. Urbanke, “Asynchronous Slepian-
Wolf coding via source-splitting,” in ISIT’97, Ulm, Ger-
many, 1997, p. 271.

[5] J. Garcia-Frias and Y. Zhao, “Near-Shannon/Slepian-
Wolf performance for unknown correlated sources over



4

AWGN channels,” Communications, IEEE Transactions
on, vol. 53, no. 4, pp. 555–559, 2005.

[6] J. Chen, D.-k. He, A. Jagmohan, and L. A. Lastras-
Montano, “On the reliability function of variable-rate
Slepian-Wolf coding,” in 45th Annual Allerton Confer-
ence, Urbana-Champaign, IL, 2007.

[7] A. Liveris, C. Lan, K. Narayanan, Z. Xiong, and
C. Georghiades, “Slepian-Wolf coding of three binary
sources using LDPC codes,” in Proc. Intl. Symp. Turbo
Codes and Related Topics, 2003.

[8] V. Stankovic, A. D. Liveris, Z. Xiong, and C. N. Georghi-
ades, “On code design for the Slepian-Wolf problem and
lossless multiterminal networks,” Information Theory,
IEEE Transactions on, vol. 52, no. 4, pp. 1495–1507,
2006.

[9] A. Wyner, “Recent results in the Shannon theory,” IEEE
Trans. Inform. Theory, vol. 20, pp. 2–10, Jan. 1974.

[10] T. Cover and J. Thomas, Elements of Information Theory,
2nd ed. New York: Wiley, 2006.


