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Abstract. A reasonable compromise of privacy and utility exists at an “appropriate” resolution of the data.
We proposed novel mechanisms to achieve privacy preserving data publishing (PPDP) satisfying ε-differential
privacy with improved utility through component analysis. The mechanisms studied in this article are Princi-
pal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The differential PCA-based PPDP
serves as a general-purpose data dissemination tool that guarantees better utility (i.e., smaller error) compared to
Laplacian and Exponential mechanisms using the same “privacy budget”. Our second mechanism, the differen-
tial LDA-based PPDP, favors data dissemination for classification purposes. Both mechanisms were compared
with state-of-the-art methods to show performance differences.

Keywords. differential privacy, data publishing, principal component analysis, linear discriminant analysis

1 Introduction
Dissemination and meaningful use of patient data can help improve treatment satisfaction, quality
of life, and various aspects of well-being [1]. However, privacy is a major concern when patient data
is used for research purposes [2]. Healthcare data often contain sensitive information about indi-
viduals, and publishing such data might violate their privacy. Ensuring privacy while maintaining
data utility is one of the most important problems in biomedical research [3, 4]. Loss of privacy is
usually associated with failure to control access to information, to control the flow of information, or
to control the purposes for which information is employed [5]. To provide strong privacy guarantees
and to give researchers greater flexibility in conducting the required data analysis, it is necessary to
develop utility-aware privacy preserving data publishing mechanisms. In this paper, we proposed
two new privacy-preserving publishing algorithms that can effectively preserve data utility for vari-
ous data workloads and achieves differential privacy, a rigorous definition that provides a provable
privacy guarantee.

1.1 Motivation and Related Work
Data privacy has been an active research topic in statistics, database, and security community for the
last three decades [6–9]. Many privacy models, such as k-anonymity [10] and its extensions [11,12]
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have been proposed to thwart privacy threats caused by identity and attribute linkages in relational
databases. The usual approach is to generalize the records into equivalence groups so that each group
contains at least k records with respect to some quasi-identifier (QID) attributes, and the sensitive
values in each QID group are diversified enough to prevent confident inferences. A large number
of anonymization algorithms [13, 14], tailored for both general and specific data mining tasks, have
been proposed based on these privacy models.

However, Wong et al. [15] showed that these algorithms are vulnerable to minimality attack and
do not provide the privacy guarantees. Subsequently, more privacy attacks such as composition
attack [16], deFinetti attack [17], and foreground knowledge attack [18] have emerged against these
algorithms [13, 14].

Differential privacy has received considerable attention recently as a substitute for aforementioned
partition-based models for privacy preserving data publishing (PPDP). A differentially-private mech-
anism ensures that the probability of any output (released data) is equally likely from all nearly
identical input data sets and therefore guarantees that all outputs are insensitive to an individual’s
data. Most of the research on differential privacy concentrates on non-data publishing with the goal
to reducing the magnitude of added noise [19, 20], or releasing certain data mining results [21, 22].
These techniques completely prohibit the sharing of data. When compared to sharing the results
of data mining, data sharing gives greater flexibility because recipients can perform their required
analyses and data exploration, and apply different modeling methods and parameters.

Current techniques that allow data sharing publish contingency tables of the original data [20,
23–25]. These techniques generally add Laplacian noise to the raw counts of records to ensure
differential privacy. The Laplacian mechanism has two main limitations. First, Laplacian noise on
counts could eliminate almost half of the small counts, since negative counts are considered as zero.
Second, Laplacian noise is unbounded, which could result in released data to be unexpectedly large,
and with a few records sampled repeatedly, dominating the entire database. Thus, these techniques
may significantly destroy the data utility. We also confirmed this point by experiments in Section 4.

1.2 Contributions

In this paper, we propose two privacy-preserving data publishing (PPDP) mechanisms: differential
PCA and differential LDA. The proposed mechanisms build a compact, privacy-preserving synopsis
based on component analysis with a fixed amount of privacy budget. Synthetic data are generated
from the privacy-preserving synopsis to answer any queries or build data mining algorithms without
decreasing the level of privacy protection. Our component analysis based privacy preserving data
publishing (PPDP) mechanisms add noise, mostly on the first and second moments (i.e., mean and
variance-covariance) rather than on the original data or their contingency tables. This reduces the
required amount of noise and enables us to provide the same privacy protection with less perturba-
tion compared to existing techniques. Next, we briefly present the key advantages of the proposed
mechanisms.

1. The differential PCA-based PPDP generates synthetic data with a one-to-one mapping to the
original data, and preserves the order information. This is essential for data custodians to pub-
lish time-series data (i.e., lab tests) or enable privacy preserving sequential release of attributes
from the same database.

2. The differential LDA-based PPDP provides great flexibility in generating synthetic data, which
provides a better preservation of the original data distribution. Experimental results demon-
strated that the proposed LDA-based PPDP outperforms the recently proposed differentially-
private data release algorithm [25] for different utility metrics.
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A similar mechanism to our PCA-based PPDP called SuLQ [26], which is also based on principle
component analysis, however, is different from our work in its purpose (i.e., query in the projected
subspace vs. data publishing) and noise addition procedures (i.e., adding Gaussian noise to variance-
covariance matrix in SulQ vs. adding Laplacian noise to both variance-convariance matrix and
projected data in our case). We are not aware of similar works to our LDA-based PPDP.

The rest of the paper is organized as follows. Section 2 reviews Principle Component Analysis
(PCA), Linear Discriminate Analysis (LDA), and Differential Privacy (DP). Our component-analysis
based privacy preserving data publishing mechanisms are explained in Section 3. Section 4 exper-
imentally evaluates the performance of our methods and compares to the state-of-the-art models.
Section 5 concludes the paper.

2 Preliminaries
Principle Component Analysis (PCA) is an analysis method that converts observations of random
vectors into orthogonal principal components, while the number of principal components can be
either equal or smaller than the dimension of the original data. When the number of components
is smaller than the dimension of the original data, we can project the original data to the space of
these principal components to get a low-rank approximation. The idea behind this approximation is
to preserve as much information of the original data (i.e., the criterion is to minimize the F-norm of
the approximation error) as possible. Mathematically, given a matrix Xn×p representing the n-record
and p-dimensional data, PCA decomposes the variance-covariance matrix D = Var [X ] = UTVU ,
where U is an orthogonal matrix consists of eigenvectors, and

V = diag{λ1,λ2, . . . ,λp},

λ1 ≥ λ2 ≥ ·· · ≥ λp ≥ 0

are the eigenvalues. The eigenvectors are also called principal components. Suppose Uk is the first k
eigenvectors of Var [X ], we can get an approximation of X by computing

(X−E [X ])UT
k Uk +E[X ].

Based on linear algebra, we know that∥∥(X−E[X ])UT
k Uk +E[X ]−X

∥∥2
F =

λk+1 + · · ·+λp

λ1 + · · ·+λp
‖X−E[X ]‖2

F .

For correlated data, the ratio between meaningful eigenvectors and total eigenvectors is usually
small, i.e., there exists some k� p, λk+1+···+λp

λ1+···+λp
' 0.

Linear Discriminant Analysis (LDA) is a classification algorithm based on component analysis.
It assumes that data in each class comes from a Gaussian distribution, and it uses the probability
density to classify new samples. For example, suppose the data in class Ci have a mean of µi and a
variance-covariance matrix Σ, then for each new data x, the probability

P(x ∈Ci) ∝ exp(−1
2

log |Σ| − 1
2
(x−µi)

T
Σ
−1(x−µi)).

To predict the class to which the sample belongs, we just need to compare the probabilities.
Differential privacy (DP) is a cryptographically motivated privacy criterion proposed by Dwork
[27], which assumes that any results (i.e., through query operations) of a “private” data set should not
drastically change with an addition, deletion, or update of a single record. The Laplacian mechanism
is a common way for achieving differential privacy.
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Definition 1 (ε-Differential Privacy). A randomized algorithm (or mechanism) Ag is differentially
private if for all data sets D and D ′, where their symmetric difference contains at most one record,
and for all possible anonymized data sets D̂ ,

Pr[Ag(D) = D̂ ]≤ eε ×Pr[Ag(D ′) = D̂ ], (1)

where the probabilities are over the randomness of the algorithm Ag.

Theorem 1 [20] (Laplacian mechanism) For any function f : D → R, the algorithm Ag that adds
noise with distribution Lap(s/ε) (where s = maxD ,D ′ ‖( f (D)− f (D ′))‖1 denotes sensitivity and ε

stands for the privacy budget) to the outputs of f (·) satisfies differential privacy.

3 Methodology
We first illustrate our intuition why component analysis could help. In the simplified example
showed in Figure 1, we considered a data set of 100 male adults with two highly correlated attributes:
height and weight. Here, we considered the identity query as in [28]. It publishes the data matrix
directly instead of some other queries (e.g., count query) that preserves the property of the data set.
To ensure privacy for identity query, one should intuitively perturb each data point. Note that since
each record can be considered as a disjoint data set, parallel composition [29] holds, and thus we
can ensure the entire data set to be ε-differentially private as long as each record is ε-differentially
private. However, the height and weight queries do not apply to disjoint sets of record. Therefore,
based on sequential composition [29] , we evenly split the ε budget separately into the two attributes
for ensuring each of them to be ε/2-differentially private 1. On the other hand, if the appropriate
“component” is picked (i.e., using common knowledge about weight and height), we do not need to
split the budget but can use the entire ε for a single dimension. As a result, the mean squared error
(MSE) can be significantly reduced. More importantly, as illustrated in the figure, the statistics of the
data change drastically if we naively apply noise to each dimension (attribute) independently. This
could make the data virtually unusable. In reality, the common knowledge about components does
not always exist. Therefore, it is necessary to use component analysis to find the major components
so that noise is added to fewer but most important “parts” of data without decreasing the level of
privacy protection. In this paper, all the expectations mean empirical expectation. A replace of sam-
ple will not change the expectations on the underlying distribution, but it does change the empirical
expectation.

3.1 Differential PCA
In differentially PCA, we add noise in both projection and recovery steps as mentioned in Section 2.
First, we decompose a noisy variance matrix instead of the exact matrix. Second, we add noise to
the projected matrix before recovery. Suppose the samples are p-dimensional i.i.d. random vectors
X1,X2, ...,Xn, this mechanism guarantees better better performance than the Laplacian mechanism
(i.e., on the raw data) in terms of F-norm, if nε � p2 and ε2 + k2 ≤ p2 (the latter is often true since
we usually have k < p and small ε).

Both conditions will be justified in Theorem 3 but let us first discuss how to get differentially private
E [X ] and upper triangle E

[
XXT

]
from X , which are essential to this mechanism. Specifically, we

only consider the upper triangle of E
[
XXT

]
because of its symmetry, i.e., if we change its upper

triangle, we can just copy the noisy entries to the lower triangle.

1The optimal solution might correspond to an uneven split of the budget. We did not intend to study the optimal budget
allocation for this illustration example.
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Figure 1: Two versions of noisy data after applying the Laplacian mechanism to: (1) a principal
component (noisy results indicated by ‘4’), (2) the original domain (noisy results indicated by ‘o’),
of simulated weight and height data of male adults (’+’). The difference of mean squared errors
(MSE) between component aware and unaware approach increases as the privacy budget decreases.
For example, for privacy budget, ε = 1, the difference is (6197.27 - 2750.08) as shown in the lower-
right figure. Our interested ranges for both weight and height were predetermined before getting the
data, therefore, sensitivity is independent of the data.
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Suppose each variable is clamped to [0,1], and there are p numerical variables in total, the sensi-
tivity of ∑x∈X x and upper triangle ∑x∈X xxT are s = p+(p+1)p/2. The detailed differential PCA
is as follows. (The mechanism for data set with categorical variables will be discussed later).
PCA-based PPDP Mechanism:

1. Given a data set (or matrix) Xn×p. Suppose each entry in the set is bounded to [0,1], we
compute ∑x∈X x and ∑x∈X xxT .

2. Get noisy sums of x and xxT by adding Lap(2s/ε) on each entry of ∑x∈X x and upper triangle
of ∑x∈X xxT , then fill in the lower triangle of ∑x∈X xxT with the upper triangle symmetrically.

3. Get E[X ]noisy and E
[
XXT

]
noisy by dividing the noisy sums by sample number n.

4. Step 3 ensures that
D = E

[
XXT ]

noisy− E[X ]noisyE[X ]Tnoisy

is a symmetric matrix. Thus, we can eigen-decompose it D = UTV U , and select the k ≤ p
eigenvectors that have the largest eigenvalues from U to form Uk.

5. Add noise Lap(2
√

kp/ε) on (X −E[X ]noisy)U
T
k , multiply it by Uk, and add E[X ]noisy to each

sample to get noisy X .

Proof of differential privacy:

Lemma 1 E[X ]noisy and E
[
XXT

]
noisy are ε/2-differentially private.

Proof. The sum of sensitivities of ∑x∈X x and ∑x∈X xxT is s, thus the noisy sums in the second step
are ε/2-differentially private, and so are E[X ]noisy and E

[
XXT

]
noisy in the third step.

Lemma 2 Given UT
k , the sensitivity of (X−E[X ]noisy)U

T
k is
√

kp.

Proof. Since XUT
k is an n× k matrix, and each sample only affects one row in it, we only need to

prove that for any x1 and x2 there is ∥∥∥(x1− x2)UT
k

∥∥∥
1
≤
√

kp

Since there are k orthogonal components in Uk which are all unit length vectors, we can use u1 to uk

to represent them. The maximum value of
∥∥∥(x1− x2)UT

k

∥∥∥
1

is max∑
k
i=1 |(x1− x2)

T ui|. Since

(
k

∑
i=1
|(x1− x2)

T ui|

)2

≤ k
k

∑
i=1
|(x1− x2)

T ui|2

≤ k‖x1− x2‖2
2

≤ kp,

the maximum value is therefore less than
√

kp.

Lemma 3 The noise added (X−E[X ]noisy)U
T
k is also ε/2-differentially private.

TRANSACTIONS ON DATA PRIVACY ()



7

Proof. In step 5 of the PCA-based PPDP mechanism, we add noise Lap(2
√

kp/ε) to (X−E[X ]noisy)U
T
k

(i.e., which has a sensitivity of
√

kp), therefore making it ε/2-differentially private.

Theorem 2 The differential PCA mechanism is ε-differentially private.

Proof. For any data sets D1 and D2 that differ at most one entry, we have (suppose the data matrix
in D1 is X1 and that in D2 is X2)∣∣∣∣∣P

(
X
∣∣ X1

)
P
(
X
∣∣ X2

) ∣∣∣∣∣=
∣∣∣∣∣∣
∫

P
(

X
∣∣∣ E[X ]noisy,E

[
XXT ]

noisy,XUT
k (noisy)

)
P
(

E[X ]noisy,E
[
XXT ]

noisy,XUT
k (noisy)

∣∣∣ X1

)
∫

P
(

X
∣∣∣ E[X ]noisy,E[XXT ]noisy,XUT

k (noisy)

)
P
(

E[X ]noisy,E[XXT ]noisy,XUT
k (noisy)

∣∣∣ X2

)
∣∣∣∣∣∣

≤ max
E[X ]noisy,E[XXT ]noisy,XUT

k (noisy)

∣∣∣∣∣∣
P
(

E[X ]noisy,E
[
XXT ]

noisy,XUT
k (noisy)

∣∣∣ X1

)
P
(

E[X ]noisy,E[XXT ]noisy,XUT
k (noisy)

∣∣∣ X2

)
∣∣∣∣∣∣

≤ max
E[X ]noisy,E[XXT ]noisy,XUT

k (noisy)

∣∣∣∣∣∣
P
(

XUT
k (noisy)

∣∣∣ E[X ]noisy,E
[
XXT ]

noisy,X1

)
P
(

E[X ]noisy,E
[
XXT ]

noisy

∣∣∣ X1

)
P
(

XUT
k (noisy)

∣∣∣ E[X ]noisy,E[XXT ]noisy,X2

)
P
(

E[X ]noisy,E[XXT ]noisy

∣∣∣ X2

)
∣∣∣∣∣∣

≤ exp
(

ε

2

)
exp
(

ε

2

)
= exp(ε) .

Theorem 3 Differential PCA based PPDP adds smaller noise compared to the Laplacian mechanism
in terms of F-norm, given: (1) nε � p2; (2) ε2 + k2 < p2.

Proof. The noise of this method comes three ways: approximation of p-dimension data with pro-
jection on k-dimensional space, the noise on the variance-covariance matrix D, and on XUT

k . The
first is λk+1+...+λn

λ1+...+λn
‖X −E[X ]‖F =

λk+1+...+λn
λ1+...+λn

O(pn). The second part is very small when nε � p2

because the sensitivity is at most O(p2/nε). When nε � p2, the difference between D and D are
small, thus the approximation error is also small. The third part is the main source of noise. Its
variance is about O(k2 pn/ε2) (kn entries, each added noise Lap

(√
kp/ε

)
has variance O(kp/ε2)).

The noise of the Laplacian mechanism is O(p3n/ε2) (pn noise, each Lap(p/ε)). Thus, our method
is better by F-norm when

λk+1 + ...+λn

λ1 + ...+λn
O(pn)+O(k2 pn/ε

2)≤ O(p3n/ε
2).

That is, if λk+1+...+λn
λ1+...+λn

≤ 1 is always true and ε2 + k2 < p2, our method adds smaller noise.

How to deal with categorical variables Although PCA was developed for numerical variables, we
can use them for categorical variables. Suppose there are p1 numerical variables which have been
normalized to [0,1], and p2 categorical ones. We followed the common practice to change them into
dummy variables, and treat these dummy variables as numerical variables in the PCA.

There are two differences introduced by categorical variables. First, the sensitivity is significant
lower. Although one categorical variable may generate many dummy variables, only one of them
can be one in a sample, and the others are all zeros. The largest change of ∑x∈X x and upper triangle
of ∑x∈X xxT is achieved by changing all numerical variables from zero to one (or from one to zero),
and all categorical ones at the same time. In this case, p2 (or p1+ p2) values are changed from one to
zero and p1+ p2 (or p2) are changed from zero to one. Thus ∑x∈X x changes with (p1+2p2) in terms
of L1 norm, and the upper triangle of ∑x∈X xxT changes with [(p1+ p2)(p1+ p2+1)+ p2(p2+1)]/2.
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Therefore, the sensitivity s of (∑x∈X x,upper triangle of∑x∈X xxT ) is (p1 + 2p2)+ [(p1 + p2)(p1 +
p2+1)+ p2(p2+1)]/2. Note that the number of different values of one variable does not contribute
to the sensitivity.

The second difference comes from the value recovery. Since the noisy outputs are continuous, it
is necessary to recover the categorical variables from dummy variables. In differential PCA, the
recovery is simply picking the largest value of noisy outputs so that one category is selected. In this
way, the output can keep the same format (i.e. categorical) as the input.

3.2 Differential LDA
This mechanism aims at preserving as much information as possible for classification algorithms
instead of the original data, which makes it different from the first mechanism.

As the LDA only uses the means and variance-covariance matrices (here we assume that all classes
have the same variance matrix to reduce sensitivity) of data in different classes, we must preserve
as much information on them as we can. Our idea is first to get these noisy statistics, and then
generate data from them. Suppose there are two classes (in fact, it can be generalized to multi-class
classification easily). Assume all the p variables are numerical variables in [0,1], the mechanism is
elaborated as follows:

LDA-based PPDP Mechanism

1. Given data set (or matrix) Xn×p for classes i= 1,2 and suppose each entry in the set is clamped
to [0,1]. We obtain ∑x∈Classi x and ∑x∈both class xxT .

2. Add noise Lap([2p+ p(p+ 1)/2]/ε) on noisy sums and then divide them by sizes of two
classes and the whole data set to get Ei[X ]noisy, i = 1,2 and E

[
XXT

]
noisy. The E

[
XXT

]
noisy

shall be symmetric by the same method in PCA (add noise on the upper triangle and copy
values to the lower triangle).

3. Draw samples that approximately minimize the L1 distance between their statistics and the
noisy statistics. The detail of this sampling procedure will be provided later.

In experiments, the sampling algorithm not only generates new data in the original format, but also
reduces the noise in the noisy statistics. Note that publishing the samples offers better utility than
publishing the noisy statistics.

Proof of Differential Privacy

The key is to prove the noisy statistics in step 2 are differentially private. The replacement can
happen in one class or between classes. If the replacement is within one class, then the proof for the
differentially private PCA also works here. If one sample s1 in Class 1 is replaced by a sample s2 in
Class 2, the change of Ei[x], i = 1,2 are as follows. Suppose the two classes are denoted X1 and X2,
and have n1 and n2 samples originally. Then the statistics changes from

1
n1

∑
x∈X1∪{s1}

x and
1
n2

∑
x∈X2

x

to
1

n1−1 ∑
x∈X1

x and
1

n2 +1 ∑
x∈X2∪{s2}

x.
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The L1 norms of the changes of the two statistics are∣∣∣∣∣ 1
n1

∑
x∈X1∪{s1}

x− 1
n1−1 ∑

x∈X1

x

∣∣∣∣∣
1

≤max

{∣∣∣∣∣ 1
n1(n1−1) ∑

x∈X1

x

∣∣∣∣∣
1

,

∣∣∣∣ 1
n1

s1

∣∣∣∣
1

}

≤max
{

p
n1

,
p
n1

}
=

p
n1∣∣∣∣∣ 1

n2
∑

x∈X2

x− 1
n2 +1 ∑

x∈X2∪{s2}
x

∣∣∣∣∣
1

≤max

{∣∣∣∣∣ 1
n2(n2 +1) ∑

x∈X2

x

∣∣∣∣∣
1

,

∣∣∣∣ 1
n2 +1

s2

∣∣∣∣
1

}

≤max
{

p
n2 +1

,
p

n2 +1

}
=

p
n2 +1

.

If a sample in the second class is replaced by a sample in the first class, the changes are bounded by
p

n1+1 and p
n2

. As the noise added to the sums are Lap([2p+ p(p+1)/2]/n1ε) and Lap([2p+ p(p+
1)/2]/n2ε) respectively, the two statistics are at least 2ε/(p+5) differentially private each.
As the largest change of upper triangle of ∑x∈both class xxT is still p(p+1)/2 and the noise added

to each component of the upper triangle is Lap([2p+ p(p+ 1)/2]/ε), the noisy covariance matrix
(after divided by n1 + n2) is at least (p+ 1)ε/(p+ 5)-differentially private. Therefore, the three
statistics are 2ε/(p+ 5), 2ε/(p+ 5) and (p+ 1)ε/(p+ 5) differentially private, respectively. The
combination of them preserves ε differential privacy.

Since the statistics in step 2 of this mechanism are ε differentially private, and the algorithm does
not use the original data in the following steps, this algorithm preserves ε differential privacy.

Sampling As the LDA depends on the inverse of covariance matrix and the noisy matrix might con-
tain negative elements, the noisy statistics cannot be used in classification directly. One solution is to
eigen-decompose the matrix and change all the eigenvalues to be positive, however, its performance
might be undermined. We want the output data useful for meaningful tasks, for example, classifiers.
Therefore, it is necessary to draw samples from the noisy statistics.

Our sampling procedure is to reduce the noise (i.e., in the statistics) by rectifying some projected
errors introduced in the previous steps for maintaining differential privacy. We treat the sampling
as an optimization problem, which aims at minimizing the following target function (i.e., equals to
maximizing the likelihood):

Y = argmin{y j} j=1,...,n ∑
i

∣∣∣∣∣∣ ∑
y j∈[Class i]

y j−niEi [x]

∣∣∣∣∣∣
1

+

∣∣∣∣∣∑y j

y jyT
j − (n1 +n2)E[x∈both class]

[
xxT ]∣∣∣∣∣

1

.

We use a greedy algorithm to solve this problem iteratively, and each sample is obtained in one iter-
ation. In each iteration, one of the two classes are chosen, then the sample approximately minimizing
the target function is calculated (in the target function, the three noisy statistics Ei[X ]noisy, i = 1,2
and E

[
XXT

]
noisy are multiplied by the number of samples obtained so far instead of n1 and n2).
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To get a sample, we calculate features one by one using the greedy algorithm. When choosing the
best value z for one feature, we have p+ 1 items related to z in the target function. Among them,
there is 1 item like |z− z0| in the first item of target function, 1 item like |z2− z1| and p− 1 items
like |z2z− z3| in the second items (here z0, z1 and z3 are pre-determined constants, and z2 is other
feature’s value). The first step is to change all items to the form of |az−b| (a and b are constants).
We replace the z2 in |z2−z1| by the product of z and its noisy mean, and replace all z2 with constants
in this way: if the corresponding value has been got, then that value will replace z2; if the corre-
sponding value has not been decided, the noisy mean will replace z2. As the target function reduced
to sum of functions like |az− b|, which is piecewise linear, one of zero points of those az− b = 0
must be the optimal value, therefore, only the target function on those zero points shall be compared
(if there are other constraints on the value, they can be considered in the selection here. For example,
if the values must be in [0,1], then 0 and 1 may also be the optimal value). Therefore, we just use
O(p) time to get O(p) possible optimal values and O(p2) time to get the target function for them and
select the true optimal. As there are p features in a samples, O(p3) operations are needed in each
iteration. Experiments show that the statistics of the samples are closer to the true statistics than the
noisy statistics, which validates the usefulness of this method.

Categorical variables The categorical variables also bring two challenges to LDA after we convert
them to dummy variables. The first is sensitivity. With p1 numerical variables and p2 categorical
variables, the sensitivity of Ei [x] , i = 1,2 are (p1 + p2)/n1 and (p1 + p2)/n2, and the sensitivity of
the upper triangle of Ex∈both class

[
xxT
]

is bounded by [(p1+ p2+1)(p1+ p2)+ p2(p2+1)]/2(n1+
n2). Therefore by the similar analysis as above, it’s easy to prove that to add noise Lap({2(p1+ p2)+
[(p1 + p2 +1)(p1 + p2)+ p2(p2 +1)]/2}/ε) to each component of the sums preserves ε differential
privacy.

The second problem is sampling. The main idea is still the same as used in the numerical variables
situation, but the complexity is lower than O(p3). Suppose that there are K possible values for a
categorical feature, only K possible values shall be tested for the K dummy variables as only one of
them can be 1, and each value’s target function still needs O(p) time. The time complexity to choose
the best value for this categorical value is at most O(K p). As there are p variables including dummy
variables in total, the number of all dummy variables is less than O(p2). If the categorical variables
are chosen before numerical variables, to select the numerical variables need only O(p1(p2 + p1)

2)
time. Therefore the time complexity for each sample is O(p2 + p1(p2 + p1)

2). When there are a lot
of dummy variables (p >> p1 + p2), this sample algorithm has about the same time complexity as
computing LDA’s variance matrix, O(p2).

4 Experiments
In this section, we first compared differential PCA with the Laplacian mechanism [20] and Expo-
nential mechanism [30] in terms of F-norm of the introduced noise (i.e., cumulative mean squared
errors). The utility function q for the baseline Exponential mechanism is defined as the one used
in [31]. Regarding differential LDA, which aims at preserving information for classification, we
compared it with DiffGen [25], a state-of-the-arts data publishing mechanism that preserves classi-
fication information.

4.1 Data sets
We used the adult data set from UCI machine learning repository [32]. It is the US census data
of 1994, which contains 45,222 records. Each corresponds to a person. In each record, there are
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15 features on the person’s gender, education level, race, nationality, job, income, etc. The first 14
features are often used to predict the last one (i.e., whether this person earned more than $50k per
year).

Since there are a lot of categorical values (i.e., nationality, zipcode, and etc.) in the data set (the
number of unique categories from all categorical attribute values is about 22,000), there can be severe
over-fitting and the Laplacian noise can be large (i.e., when we introduce dummy variables, the scales
of the noise are in the order of square of total unique values). Therefore, we removed features: final
weight, education, occupation and nationality, and used dummy variables to represent the rest of
the categorical variables. Since our mechanisms require the data to be in [0,1], we normalized the
continuous variables. After these pre-processing, there were 35 features remaining.

4.2 Design

All the dummy variables are binary in the original data. However, we cannot add Laplacian noise
directly to them. Therefore, we treated them as real-numbered variables and expanded their domains
to R. Although the data in each class were not from a normal distribution even if we expanded the
domain, we can still use the LDA mathematically. This data-independent use of LDA is also required
in practice because if we only use the mechanism when data are normally distributed, it may leak
some information about the data.

4.3 Differential PCA Results

We evaluated our differential PCA-based PPDP by F-norm and compared results with those of Lapla-
cian and Exponential mechanisms. The same experiments were repeated 10 times, and we reported
the average performance of all three mechanisms in Figure 2.
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Figure 2: Differential PCA is compared to Laplacian (LAP) and Exponential (EXP) mechanisms in
terms of the F-norm, i.e., Cumulative mean squared errors (MSE). (a) Energy in percentile carried
by eigenvectors sorted by their eigenvalues. (b) Comparison of MSEs between three mechanisms at
six different privacy budgets, i.e., ε = 0.1,0.25,0.5,1,1,25,1.5. (c) Boxplots of MSEs. In (b) and
(c), we implemented differential PCA-based PPDP with various numbers of components (i.e., 1-10),
and all results are averaged from 10 trials. T-test shows that MSEs of PCA are significantly smaller
than those of LAP and EXP and PCA (p < 0.01), indicated by stars.

The first subfigure indicates that the top 10 eigenvectors carried more than 90% of the entire energy
of the data, and there is not much information left for the rest of the eigenvectors. As opposed to the
ordinary PCA, the mean squared errors for the differential PCA increase rather than decrease when
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more components were used, which implies the noise required for satisfying differential privacy
overshadows information carried by additional components.

The second and third subfigures show differential PCA-based PPDP has a clear advantage over
Laplacian and Exponential mechanisms, and such differences are statistically significant based on
Student-t tests. Indeed, differential PCA outperformed the other two methods in the entire range
of component sizes (i.e., k = 1 to 10). Note that we used the strategy introduced in Section 3.1 to
convert numerical variables back to categorical ones in order to make the outputs look reasonable.

4.4 Differential LDA Results

4.4.1 Classification performance

In the first part of this section, we compared the proposed differential LDA with other two data
publishing mechanisms targeted at preserving classification information, i.e., DiffGen-INFOGAIN
and DiffGen-MAX [25]. First, we use the output of both diffential LDA, DiffGen-INFOGAIN and
DiffGen-MAX to train a LDA classifier model and a C4.5 classifier model, respectively. Second,
we compare their classification performance in terms of average classification accuracy (ACA) and
area under the ROC curves (AUC) based on 10 trials, where we used 2/3 of the records to generate
training data and the remaining 1/3 of the records to test the classification performance. To better
visualize the performance of the mechanisms, we provide additional measures: error bar is the
standard deviation of each data point based on 10 trials, best achievable (BA) and lowest achievable
(LA) performances are the best and lowest possible performances of ACA and AUC measurements
given original data or completely generalized data [25], respectively.
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Figure 3: Comparison of (a) the average accuracy and (b) average AUC between DiffGen-
INFOGAIN, DiffGen-MAX, and LDA. BA: best achievable; LA: lowest achievable.

Figure 3(a) depicts the ACA among three different methods (i.e., DiffGen-INFOGAIN, DiffGen-
MAX, and LDA) with the privacy budget ε = 0.1,0.25,0.5,1,1.25,1.5. In addition, BA and LA
accuracies are 85.3% and 75.5%, respectively. In Figure 3(a), we can see that the ACA of all three
methods increases as the privacy budget increases. Moreover, the ACA of the proposed method out-
performs that of DiffGen-INFOGAIN given the privacy budget ε ≥ 0.25, although it is still slightly
lower than the ACA of the DiffGen-MAX at high privacy budgets. Furthermore, Figure 3(a) also
shows that both the proposed method and DiffGen-MAX have significantly smaller standard devia-
tions compared to these of the DiffGen-INFOGAIN. Next, in Figure 3(b), the AUC performances are
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Figure 4: Comparison of the capability of information preservation among DiffGen-INFOGAIN,
DiffGen-MAX, and LDA: (a) the average entropy of released data; (b) the average KL divergence
between released data and the original data.

also studied to measure the classification performance of the three different anonymization methods.
The AUCs of the proposed method are clearly higher than these of the other two methods, when the
privacy budget is larger than 0.5. More important, our proposed method always offers the lowest
standard deviation for all different budgets among all three methods. The experimental results sug-
gested that the proposed differential LDA method achieves a comparable ACA with DiffGen-MAX,
but higher AUC on average and a lower AUC standard deviation.

4.4.2 Information preservation

In the second part, we also compared all the three methods in terms of information preservation.
We measure the preserved information of these mechanisms by two information theoretic metrics:
entropy and Kullback-Leibler (KL) divergence [33]. In Information Theory, the entropy provides a
measure of how much information the data contain. A larger entropy for the released data implies
a greater amount of information that a released data might contain, however, does not indicate how
relevant such infromation is about the original data. The KL divergence (a.k.a. relative entropy) was
introduced to measure the difference DKL(P||Q) between the distribution of released data P and that
of the original data Q, where DKL(P||Q) is a non-negative metric with DKL(P||Q) = 0 if and only if
P = Q.

Figure 4(a) shows the entropies of released data by using DiffGen-INFOGAIN, DiffGen-MAX
and the proposed differential LDA, where the entropy of original data is given as a reference. We
can see that the entropy obtained by the proposed method is similar to that of the original data,
whereas the entropies of the other two methods (i.e., DiffGen-INFOGAIN and DiffGen-MAX) are
quite lower than that of the original data. In other words, the amount of information preserved by
our proposed anonymization method is comparable to that of the original data, while the amount of
released information in DiffGen-INFOGAIN and DiffGen-MAX methods are only about 30% and
20% of the original data, respectively. These results indicate that both the DiffGen-INFOGAIN and
DiffGen-MAX methods merely intend to preserve useful information for classification purpose. In
contrast, the proposed method could preserve an equivalent amount of information as the original
data, which offers greater usability for general-purpose data mining tasks other than classification.

Second, in Figure 4(b) we investigated how the released information from different anonymization
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methods is relevant to the original data, in terms of KL divergence. Figure 4(b) shows that the
proposed method achieves the minimum average KL divergence among all three anonymization
methods, where the KL divergence of the proposed method is only about one thirds of the other two
methods. This shows that differential LDA outperforms the other two methods, as it maintains a
more similar distribution in the released data, as well as preserves a larger amount of information.

5 Conclusions
In this paper, we proposed two novel mechanisms for privacy preserving data publishing that achieve
ε-differential privacy and provide better utility than the existing techniques. Two mechanisms, dif-
ferential Principle Component Analysis and differential Linear Discriminant Analysis were studied
in this paper. The former method serves as a general-purpose data dissemination tool that guarantees
better utility (i.e., lower error) when compared to Laplacian and Exponential mechanisms, that use
the same privacy budget. The method is applicable to data dissemination for classification purposes.
Through theoretically justification and experimental comparisons, we showed that the proposed pri-
vacy preserving data publishing mechanisms are more effective than the state-of-the art alternatives
in retaining data utility.

6 Acknoledgements
XJ, LZ, SW and LO-M were funded in part by the NIH grants K99LM011392, UH2HL108785,
U54HL108460, UL1TR00010003 and the AHRQ grant R01HS019913.

TRANSACTIONS ON DATA PRIVACY ()



15

References

[1] D. Alemayehu, R. J. Sanchez, and J. C. Cappelleri, “Considerations on the use of patient-reported out-
comes in comparative effectiveness research.,” Journal of Managed Care Pharmacy, vol. 17, no. 9 Suppl
A, pp. S27–33, 2011.

[2] N. Adam, T. White, B. Shafiq, J. Vaidya, and X. He, “Privacy preserving integration of health care data.,”
AMIA Annual Symposium proceedings, pp. 1–5, Jan. 2007.

[3] K. El Emam, “Risk-Based De-Identification of Health Data,” IEEE Security & Privacy Magazine, vol. 8,
pp. 64–67, May 2010.

[4] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C.-K. Lee, “Centralized and distributed anonymization
for high-dimensional healthcare data,” ACM Transactions on Knowledge Discovery from Data, vol. 4,
pp. 1–33, Oct. 2010.

[5] C. Dwork, “A firm foundation for private data analysis,” Communications of the ACM, vol. 54, pp. 86–95,
Jan. 2011.

[6] N. R. Adam and J. C. Worthmann, “Security-control methods for statistical databases: a comparative
study,” ACM Computing Surveys, vol. 21, pp. 515–556, Dec. 1989.

[7] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-Preserving Data Publishing: A survey of recent
developments,” ACM Computing Surveys, vol. 42, pp. 1–53, June 2010.

[8] R. Sarathy and K. Muralidhar, “Evaluating laplace noise addition to satisfy differential privacy for nu-
meric data,” Transactions on Data Privacy, vol. 4, no. 1, pp. 1–17, 2011.

[9] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regression,” in Neural Information Pro-
cessing Systems, pp. 289–296, 2008.

[10] L. Sweeney, “k anonymity: A model for protecting privacy,” International Journal of Uncertainty Fuzzi-
ness and Knowledge Based Systems, vol. 10, no. 5, pp. 557–570, 2002.

[11] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-diversity: privacy beyond k-
anonymity,” ACM Transactions on Knowledge Discovery from Data, vol. 1, pp. 3–es, Mar. 2007.

[12] R. Chi-Wing, J. Li, A. W.-C. Fu, and K. Wang, “(α , k)-anonymity,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, (New York, NY), pp. 754–
761, 2006.

[13] B. C. M. Fung, K. Wang, and P. S. Yu, “Anonymizing classification data for privacy preservation,” IEEE
Transaction on Knowledge and Data Engineering, vol. 19, pp. 711–725, May 2007.

[14] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Workload-aware anonymization techniques for large-
scale datasets,” ACM Transactions on Database Systems, vol. 33, pp. 1–47, Aug. 2008.

[15] R. C. W. Wong, A. W. C. Fu, K. Wang, and J. Pei, “Minimality attack in privacy preserving data pub-
lishing,” in Proceedings of the 33rd international conference on Very large data bases, (Vienna, Austria),
pp. 543–554, 2007.

[16] S. R. Ganta, S. Kasiviswanathan, and A. Smith, “Composition attacks and auxiliary information in data
privacy,” in Proceedings of the ACM International Conference on Knowledge Discovery and Data Min-
ing, pp. 265–274, 2008.

[17] D. Kifer, “Attacks on privacy and de Finetti’s Theorem,” in Proceedings of the ACM Conference on
Management of Data, (Providence, RI), pp. 127–138, 2009.

[18] R. C. W. Wong, A. W. C. Fu, K. Wang, Y. Xu, and P. S. Yu, “Can the Utility of Anonymized Data be used
for Privacy Breaches?,” ACM Transactions on Knowledge Discovery from Data, vol. 5, pp. 1–24, Aug.
2011.

[19] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in Proceedings of the twenty-
second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, (New York, NY),
pp. 202–210, 2003.

[20] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analy-

TRANSACTIONS ON DATA PRIVACY ()



16

sis,” in Theory of Cryptography, vol. 3876, pp. 265–284, 2006.

[21] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta, “Discovering frequent patterns in sensitive data,”
in Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining, (New York, NY), pp. 503–510, 2010.

[22] A. Friedman and A. Schuster, “Data mining with differential privacy,” in Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, (New York, NY), pp. 493–
502, 2010.

[23] X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via wavelet transforms,” in IEEE Transactions on
Knowledge and Data Engineering, vol. 23, pp. 1200–1214, Aug. 2011.

[24] M. Hay, V. Rastogi, G. Miklau, and D. Suciu, “Boosting the accuracy of differentially-private histograms
through consistency,” in Proceedings of the International Conference on Very Large Data Bases, vol. 3,
pp. 15–22, Apr. 2009.

[25] N. Mohammed, R. Chen, B. C. Fung, and P. S. Yu, “Differentially private data release for data min-
ing,” Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, p. 493, 2011.

[26] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical privacy: the sulq framework,” in Proceed-
ings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp. 128–138, ACM, 2005.

[27] C. Dwork, “Differential privacy,” in International Colloquium on Automata, Languages and Program-
ming, vol. 4052, pp. 1–12, 2006.

[28] Y. Li, Z. Zhang, M. Winslett, and Y. Yang, “Compressive mechanism: Utilizing sparse representation
in differential privacy,” in Proceedings of the 10th annual ACM workshop on Privacy in the electronic
society, pp. 177–182, ACM, 2011.

[29] F. Mcsherry, “Privacy integrated queries: an extensible platform for privacy-preserving data analysis,” in
Proceedings of the 35th SIGMOD international conference on Management of data, (Providence, RI),
pp. 19–30, ACM, 2009.

[30] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” in Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science, (Providence, RI), pp. 94–103, Oct. 2007.

[31] A. Blum and K. Ligett, “A learning theory approach to non-interactive database privacy,” in Proceedings
of the 40th annual ACM symposium on Theory, (Victoria, British Columbia, Canada), pp. 609–618, 2008.

[32] A. Asuncion and D. J. Newman, “UCI machine learning repository,” 2007.

[33] T. M. Cover, J. A. Thomas, J. Wiley, and Others, Elements of information theory, vol. 6. Wiley Online
Library, 1991.

TRANSACTIONS ON DATA PRIVACY ()


	Introduction
	Motivation and Related Work
	Contributions

	Preliminaries
	Methodology
	Differential PCA
	Differential LDA

	Experiments
	Data sets
	Design
	Differential PCA Results
	Differential LDA Results
	Classification performance
	Information preservation


	Conclusions
	Acknoledgements

