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Abstract

The advance in human genome sequencing technology has significantly reduced the cost of data

generation and overwhelms the computing capability of sequence analysis. Efficiency, efficacy and

scalability remain challenging in sequence alignment, which is an important and foundational operation

for genome data analysis. In this paper, we propose a two stage approach to tackle this problem. In

the preprocessing step, we match blocks of reference and target sequences based on the similarities

between their empirical transition probability distributions using belief propagation. We then conduct a

refined match using our recently published SCoBeP technique. Our experimental results demonstrated

robustness in nucleotide sequence alignment and our results are competitive to those of the SOAP aligner

and the BWA algorithm. Moreover, compared to SCoBeP alignment, the proposed technique can handle

sequences of much longer lengths.

I. INTRODUCTION

In bioinformatics, sequence alignment is an important way to identify similar regions that

might be associated with similar functional and structural relationship between sequences. With

the quick growth of genomic data, it is important to develop effective sequence alignment
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techniques that are scalable. The past decade has witnessed the development of many sequence

alignment technologies. Cancers are caused by the collection of genomic sequence changes [1].

Therefore, alignment and analyses of cancer genome sequences provide basics to understand

cancer biology, diagnosis and therapy.

In general, pairwise sequence alignment methods can be classified into local and global

approaches. The global alignment attempts to find the best match between two strings with

similar lengths through global optimization. In contrast, the local alignment is usually used to

identify regions of similarity between a short query and a longer sequence. Global alignments [2]–

[5] are less prone to demonstrating false homology as each letter of one sequence is constrained

to being aligned to only one letter of the other. Local alignments [6]–[9], on the other hand, can

cope with rearrangements between non-syntenic, orthologous sequences by identifying similar

regions in sequences; this, however, comes at the expense of a higher false positive rate due to

the inability of local aligners to take into account overall conservation maps [10].

A lot of efforts have been made to improve the efficiency and efficacy of sequence alignments.

The ClustalW program proposed by Thompson and Larkin [11], [12] uses a multi-stage mecha-

nism to weight and to align sub-sequences based on sequence divergences. In addition, sequence

annealing technique incrementally builds sequence alignment one at a time by checking whether

a single match is consistent with a partial multiple alignments [13]. Darling et al. proposed a

hidden Markov model that uses a sum-of-pairs breakpoint score to facilitate the detection of

rearrangement breakpoints, when genomes have unequal gene content [14]. Mummer is a highly

efficient suffix tree based matching tool for whole genome alignment, as well as incomplete

genomes [15].

Researchers also proposed heuristics to accelerate sequence alignment. For example, the

bounded sparse dynamic programming (BSDP) is used to support rapid approximation of ex-

haustive alignment in [16]. Another heuristic-driven approach, namely FastTree, is a tree-based

method that stores profiles of internal nodes in a tree, such that candidate joins can be quickly

identified. FastTree is also scalable for handling alignments over 10,000 sequences [17], [18].

Maximum-likelihood based approaches like PhyML and RAxML-VI-HPC have been devel-

oped as well. PhyML [19] used a hill-climbing algorithm that adjusts tree topology and branch

length at each tree modification iteration. RAxML-VI-HPC [20], which stands for randomized

accelerated maximum likelihood for high performance computing, takes advantages of a parallel



program to support large-scale genome alignment.

In this paper, we propose a novel alignment method that uses sparse coding [21] and empirical

transition probability to tackle the scalability challenge. Thanks to the sparse representation,

our mechanism can handle long sequences with reduced memory footprint. We also leverage

belief propagation to combine local and neighboring information of candidate nucleotides into

consideration and generate matching scores to determine the best match. The rest of this paper

is structured as follows. Section II introduces our proposed method. Section III presents our

results, including the comparison against SOAP aligner [22] and BWA [23]. Finally, we draw

our conclusions in Section IV.

II. PROPOSED METHOD

In this section, we present our genome indexing and alignment framework in detail, where

the proposed method includes three steps: indexing, index matching, and sequence matching. In

this paper, we refer to “reference sequence” as the base-line sequence and try to align a “read

sequence” against the base-line sequence.

A. Indexing

The current genome indexing methods generate huge indices before performing the actual

alignment to decrease the alignment time [24], [25]. The indexing process can be very time-

consuming. In contrast, our proposed indexing technique provides a faster and light-weight

alternative for index generation, which is similar to the big data retrieval systems that were

proposed [26]–[28]. These indices can reduce the search space and provide an estimation of the

read sequence locations in the reference sequence. The proposed genome indexing technique

models a nucleotide sequence as a graph by counting the transitions between each pair of

nucleotides. To be more specific, as shown in Fig. 1, we consider a graph with four states

according to the different types of nucleotides and sixteen vertices according to all possible

transitions between nucleotides. We read the first nucleotide of the sequence and treat it as the

initial state. Then, we move from one state to the other state by scanning the next nucleotide

repeatedly till the end of the sequence. Afterwards, we calculate the number of nucleotide

transitions where we count how many times we pass one vertex in the graph and store them in



a 4× 4 matrix. Finally, we normalize the resulting matrix as follows:

I =




A C G T

A kaa kac kag kat

C kca kcc kcg kct

G kga kgc kgg kgt

T kta ktc ktg ktt



× 1∑

s,w∈{a,c,g,t} ksw
(1)

where ksw is the number that has the S-type nucleotide immediately before the W -type nu-

cleotide.

If the length of a sequence is larger than a given threshold i.e., h, we divide it into subsequences

with maximum length of h, where each subsequence will have o nucleotides overlap with their

neighbors. We set o ≥ h
2

so that each pair of nucleotides can be counted at least twice. For each

subsequence i, we count the transition of the nucleotides from the start of the subsequence till

its end to reveal the number of different nucleotides that reside beside each other. In Fig. 2, an

input sequence with h = 250 is used to demonstrate the proposed indexing process, where Ii is

the calculated index for the input sequence based on the transition graph shown on the left hand

side. Finally, we normalize the transition matrix, which will be used to find the approximate

location of each subsequence in the next step.

B. Index matching

The index matching step is designed to find similar indices based on global information of

the sequence. We define a symmetric distance function between two index matrices I and J as

follows: DMSE(I, J) = ‖I − J‖f , where ‖·‖f is the Frobenius norm of the matrix.

After generating the indices of the reference sequence and the read sequence, the DMSE

distances to all reference sequence indices are calculated, where the top t most similar indices

in terms of DMSE are chosen as candidate indices. To find the best matched index, we resort to

belief propagation (BP) on a factor graph. In this paper, we provide a concise review about the

BP algorithm on factor graph for the proposed algorithm. Interested readers can check our earlier

publications in [29]–[31] for more details about the factor graph design and the BP algorithm.

We apply BP to the factor graph of the test sequence with n candidate nucleotides as the

prior knowledge. BP updates the probability of candidate nucleotides based on the probabilities

of their neighbors.
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Fig. 1: The transition diagram between nucleotides. ksw is the number of appearance of the W -type nucleotide

immediately after the S-type nucleotide where s, w ∈ {a, c, g, t}.

Then, the candidate index numbers are fed to a factor graph and the corresponding DMSE

of each of candidates is employed to calculate the initial probability (prior probability) of each

candidate. Then, message passing (i.e., forward and backward) algorithm is applied to calculate

the best match indices. The correspond subsequences of these indices is used in the next step.

C. Sequence matching

The sequence matching step is based on sparse coding and BP algorithm. In this step, we use

the subsequences that were selected in the previous step to generate an over-complete dictionary.

Then, for each nucleotide in the read sequence, we pick n candidate nucleotides using sparse

coding. By applying belief propagation to a factor graph, we can obtain the best match for each

nucleotide in the read sequence. A detailed description about the sequence matching can be

found in our recent publications [31], [32]. A summary of the main procedure for our proposed

alignment method is shown in Algorithm 1.
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Ii =




45 20 18 14
26 8 0 16
13 12 3 8
12 11 15 28


× 1

249

=




0.1807 0.0803 0.0723 0.0562
0.1044 0.0321 0.0 0.0643
0.0522 0.0482 0.0120 0.0321
0.0482 0.0442 0.0602 0.1124




Fig. 2: An example of the indexing procedure for a small sample subsequence.

D. Implementation details:

• Ii = MakeIndex(xi) fills the state matrix Ii using the relationship of nucleotides in

the subsequence xi. The subsequence xi is scanned through all its nucleotides and the

corresponding counts will be stored into the state matrix Ii. For example, kcg in Ii in (2)

shows how many times the nucleotide C will be identified, which is next to the nucleotide

G in the subsequence xi. Note that each subsequence xi has a separate state matrix Ii,

where i is the subsequence index.

Ii =




A C G T

A kaa kac kag kat

C kca kcc kcg kct

G kga kgc kgg kgt

T kta ktc ktg ktt




(2)

• [cj, ρj] = FindCandidates(Jj, I, k) identifies k candidate state matrices that are highly

similar to the test state matrix Jj in I and stores their indices in vector cj and their

probabilities in vector ρj . Note that the approach will compute the Mean Square Error

(MSE) of the test state matrix Jj with each possible Ii of the reference state matrices and

select Ii that has the smallest MSEs.



Algorithm 1 Proposed nucleotide sequence alignment algorithm for estimating the location of

the input sequence

Inputs: a reference sequence X ∈ RM , a test sequence Y ∈ RN , number of the candidate state

matrix k, number of the candidate points n

Initialize: a 4×4 state matrix I storing the numbers of nucleotide states (2), nucleotide overlap

v

Fill the reference state matrix I: For each subsequence xi ∈ X with v nucleotide overlap in

each direction perform:

• Ii = MakeIndex(xi)

Fill the test state matrix J: For each subsequence yj ∈ Y with v nucleotide overlap in each

direction perform:

• Jj = MakeIndex(yj)

• [cj, ρj] = FindCandidates(Jj, I, k)

Refine the candidate state matrix:

• ρ̂ = BP (c, ρ)

Find the correspond nucleotide in the reference sequence X : For each subsequence yj ∈ Y
with v nucleotide overlap in each direction perform:

• zj = FindBestSubsequence(X , yj, θ, n) (see [31], [32] for more details)

Output: the estimated version of aligned sequence Z

• ρ̂ = BP (c, ρ) models the problem by a factor graph and applies belief propagation [33]

to update probability ρ. The updated probability ρ̂ can be used to align the reference state

matrix index onto the test state matrix index. In our case, we assign a variable node for

each test state matrix index and connect each pair of neighboring state matrix indices with

a factor node. Also, we introduce one extra factor node to take care of the prior knowledge

obtained in the MSE step for each test state matrix index (for more details, see [32]).

• zj = FindBestSubsequence(X , yj, θ, n) finds the corresponding location for a nucleotide

yj ∈ Y . In this step, the reference nucleotide sequence X and the test nucleotide sequence Y
are converted into two integer sequences. Then, an over-complete dictionary is built with all
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Fig. 3: The results of proposed method for non-collinear nucleotide sequence alignment. a) comparison among

alignment results of the ground truth, 1D-SCoBeP [31] and the proposed method. b) zoomed of the black square

in figure 3–a to show the gap between the proposed method, ground truth and 1D-SCoBeP [31] on the jump point.

The x–axis and y–axis are the index numbers of the original genome sequences and the shuffled genome sequences,

respectively.

subsequences in the X . We then apply sparse coding followed by using Belief Propagation

(BP) to identify the best matches. (see [31], [32] for more details) Note that we used non-

overlapped subsequences to build the dictionary. This change decreases the memory usage

and the accuracy of the proposed algorithm in compare to 1D-SCoBeP [31], but it increases

the speed of our alignment algorithm.

III. EXPERIMENTAL RESULTS

We designed our experiments based on work in [14] to evaluate the proposed method for

aligning the nucleotide sequences and to compare it with SOAP aligner [22], BWA [23] and

1D-SCoBeP [31]. We considered the problem of aligning a sequence of human nucleotides from

the National Center for Biotechnology Information (NCBI) [34] and Cancer Genomics Hub

(CGHub) [35].

To evaluate the performance of our approach, we conducted two sets of tests on the nucleotide

sequences. In the first set, we selected fifty short sub-sequences of human genomes and then
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Fig. 4: Accuracy of BWA [23], SOAP aligner [22] and the proposed method in present of

different Indel rate, where the testing genome sequences were obtained from [34].

used SOAP aligner, BWA, 1D-SCoBeP and the proposed method to find the location of selected

sub-sequence nucleotide in the human chromosome. All of four algorithms successfully passed

this test. We created twenty shuffled sub-sequences of the reference sequence as follows: for

each read sequence R, we cut it into five pieces p1, p2, p3, p4 and p5. Then we switched p2 with

p4. Therefore, we converted a read sequence R = [p1, p2, p3, p4, p5] into a new read sequence

R̂ = [p1, p4, p3, p2, p5].

Fig. 3 shows the result of the 1D-SCoBeP and the proposed method show a better performance

with a gap of 100 to 120 nucleotides away from the ground truth. Since we were using non-

overlapped subsequences for the dictionary generation, the gap between the proposed method

and the ground truth was larger than these reported in 1D-SCoBeP [31]. In our experiments, the

following parameters were used: the number of candidate points n is set to be 3, the sparsity

factor k = 3 and the dictionary column size a = 200.

To evaluate the robustness of the proposed method, we generate indices for long human

genome sequences (i.e. 5 × 108 nucleotides) where h = 10000 and o = 5000. Moreover, we

synthesized insertion, deletion and mutation (i.e., indel) in these sequences. For indel rate, we

picked 105 number of subsequences with size of 104 nucleotides. Then, we randomly modified a



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
75

76

77

78

79

80

81

82

83

% of the indels

%
 o

f t
he

 c
or

re
ct

 m
at

ch
es

Fig. 5: The percentage of successful alignments in present of 0.5% to 1.5% indels. The green

line is the percentage successful alignments where the rate of the indels are changing with step

equal 0.05% between 0.7% and 1.3%. The blue line is the percentage successful alignments

where the rate of the indels are changing with step equal 0.1% between 0.5% and 1.5% and the

red line is the same as the Fig. 4. Each point represents 105 random site selection with same

indels rate. Note that the genome sequences used in this studies were obtained from [35] and

[34].

certain number of nucleotides (based on the indel rate) and aligned them with the references. We

counted how many times the alignment location and real subsequence location (i.e., ground truth)

are matched, where the accuracy is defined as the count of the successfully aligned sequences

over total number of the subsequences. Fig. 4 shows the accuracy of alignment of the proposed

method, BWA and SOAP aligner in the presence of the different indel rates. The proposed

method showed similar accuracies even when we increased the indel rate to 3%. Moreover,

the proposed algorithm still showed more than 75% accuracy even after we modified 5% of

the nucleotides in our selected subsequences. In contrast, the accuracy of the BWA and SOAP

aligner decreased sharply as the indel rates increase.

We investigate the impact of small indel rate in the range from 0.5% to 1.5% in Fig. 5. In this

figure, we showed accuracy of 1% indels in red for the data set used in 4 as reference. To verify

our result, we repeat the experiments with different indel steps and different read locations and

present the results in green and blue, respectively. Note that each point in this figure was obtained

from the evaluation over 105 read sequences. There are slight variation among the curves due



to statistical deviation. The summary of the indel rate accuracy was shown in Table I.

The computational complexity of proposed is mainly determined by the following three steps:

1) indexing 2) index matching 3) extracting sub-sequence nucleotides as features and constructing

the dictionary, 4) finding candidate nucleotides via sparse coding, and 5) applying BP. Assume the

size of the read and reference sequences are N and M nucleotides, respectively. The required

time for create indexes is O
(
M + N

)
, because we have to scan whole read and reference

sequences. The number of reference sequence indexes is IM = M
h

+ 2oM
h2 = O

(
M
h

)
and similarly,

IN = O
(
N
h

)
. Therefore, the time for the index match matching is O

(
M
h

)
× O

(
N
h

)
= O

(
MN
h2

)
.

After index matching step, the size of search space reduces from M to M̄ = Is × h where Is

is the number selected indexes Is and h is the size of each index. The required time of feature

extraction will be O
(
a(M̄ +N)

)
, where a is the size of the vector of extracted features for each

nucleotide. The dictionary construction step involves the normalization of each column, which

requires O(aM̄) amount of time. Thus the total time complexity of the first step is O
(
a(M̄+N)

)
.

In the next step, the time complexity of Subspace Pursuit (SP) is O
(

log(f)aM̄
)

[36], where f

is the number of iterations for searching the sparse vector. Since we have to repeat the process

to find candidate points for all N feature vectors, the time complexity of finding candidate

points by SP is O
(

log(f)aM̄N
)
. Then, the time complexity of Belief Propagation in our factor

graph is O(vn2M̄), where v is the number iterations before converging and n is the number

of candidates in each variable node. Finally, the time complexity of proposed method will be

O
(
MN + log(f)aM̄N + vn2M̄

)
.

IV. CONCLUSION

In this paper, we proposed a sparse coding and BP based method for indexing and alignment

genome sequences. The proposed method builds a transition matrix based on the neighboring

nucleotides of an input sequence and then reduces the search space by selecting the top K

most similar subsequences based on their distances. The proposed algorithm selects candidate

nucleotides by using sparse coding with an over-completed dictionary, which was constructed

from the nucleotides of reference sequence in the indexing step. BP algorithm is then applied to

select the best matches. Through experimental results, we showed that the proposed algorithm

are comparable to SOAP aligner [22], BWA [23] and 1D-SCoBeP [31] in terms of the alignment

accuracy. In addition, the proposed method is robust to insertions, deletions, and mutations in the



genome sequences when comparing with SOAP aligner and BWA. Finally, the proposed method

is able to process much longer sequences then our previous 1D-SCoBeP approach.
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TABLE I: Percentage of successfull alignments

% of the In-

dels

Accuracy

of red line

Accuracy

of blue line

Accuracy

of green

line

0.00 80.33 – –

0.50 – 81.19 –

0.60 – 79.38 –

0.70 – 80.90 80.64

0.75 – – 80.63

0.80 – 79.82 80.29

0.85 – – 78.90

0.90 – 78.09 80.63

0.95 – – 78.74

1.00 79.85 79.71 78.04

1.05 – – 80.43

1.10 – 80.49 79.70

1.15 – – 78.22

1.20 – 79.81 79.78

1.25 – – 79.16

1.30 – 80.54 78.94

1.40 – 80.70 –

1.50 – 79.52 –

2.00 79.09 – –

3.00 78.90 – –

4.00 76.33 – –

5.00 75.90 – –

6.00 72.09 – –

7.00 72.86 – –

8.00 69.79 – –

9.00 67.87 – –

10.00 66.42 – –


