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Abstract—In this paper, we propose a system using video cameras
to perform vehicle identification. We tackle this problem through re-
constructing an input by using multiple linear regression models and
compressed sensing, which provide new ways to deal with three crucial
issues in vehicle identification: feature extraction, online vehicle identifi-
cation database build up, and robustness to occlusions and misalignment.
The results show the capability of the proposed approach.

Index Terms—Vehicle identification, Sparse representation

I. INTRODUCTION

States conduct traffic monitoring for many reasons, including
highway planning and design or motor vehicle enforcement. Traffic
monitoring can be classified into two different types: flow monitoring
and route monitoring. Flow monitoring will observe the amount
of traffic flowing through an interested check point, whereas route
monitoring will identify the route of an interested vehicle. Unlike
flow monitoring, route monitoring generally needs to know the
identity of the observed vehicle and is generally more difficult. This
route monitoring capability can provide valuable information for
freight logistics analysis, forecast modeling, and future transportation
infrastructure planning.

For vehicle detection using a video or image sequence, the most
obvious approach has been to: first compute the stationary back-
ground image, then identify the moving vehicles as those pixels in
the image that differ significantly from the background, which is
named background subtraction [1]. However, traffic shadows cause
serious problems when doing subtraction, and slow moving or
stationary traffic is difficult to detect. This led to the emergence
of the adaptive background methods [1], [2]. After background
subtraction, connected regions in the foreground image, namely blobs,
will be associated with different vehicles and tracked over time using
different algorithms, such as cross-correlation [3], mean shift [4], etc.
Moreover, learning-based systems and a hidden Markov model are
proposed for on-road vehicle detection and tracking in [5] and [6],
[7], respectively.

The ability of vehicle detection and tracking with video will enable
us to further classify or identify interested vehicles. For the video
based vehicle classification, there are many techniques concentrating
on this work, such as, Support Vector Machines (SVM) [8], PCA with
Neural Networks (NNs) [9], a weighted k-nearest neighbor (wkINN)
[10], and BP neural network [11]. Unlike classification problems that
classify different vehicles into different categories, the video based
vehicle identification problem is to maintain the identity of a vehicle
as it travels through multiple video camera sites. In [12], Zeng et
al. proposed a color based vehicle matching system with the highest
reported true positive rate of 16.42%. However, their experimental
setup was too ideal to reflect real traffic conditions. The proposed
system needs to know the average time for vehicles to travel from site
1 to site 2 to reduce the number of candidate vehicles for matching.
It is very likely that one cannot find a corresponding vehicle in
the candidate set, since the size of candidate set for their system
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is typically 8 vehicles. Moreover, Kogut et al. [13] combined color
features and the spatial organization of vehicles within platoons to
improve the identification accuracy. A maximum positive match rate
of 45% was reported in their work. Nevertheless, their results were
based on only 22 samples, which was too small to cover different
traffic conditions. In addition, given a platoon of vehicles at site 2,
it is very difficult to find the corresponding platoon from site 1,
since the platoons of vehicles may change significantly, when the
two sites are far from each other. In this case, this algorithm will
fail, since its performance ideally depends on the spatial organi-
zation of the vehicles within their platoons. Another video-based
vehicle identification system achieved impressive performance by
using multiple individual vehicle features, such as color, external
dimensions, points of optical demarcation, etc. [14], [15]. However,
this system needs specially designed hardware for top-down camera
views, where each camera also needs to be calibrated manually before
performing identification. Moreover, all their results were obtained
by using highly overlapped vehicle databases, where the overlap
rate is about 85%. Thus the performance of low overlapped data
for their system is still unknown. Nevertheless, the results obtained
from previous vehicle identification research [12], [13], [14], [15]
are all under some given restraints, which makes it unclear how the
performance of a video based identification system would be without
the aforementioned restraints. Recently, Wright et al. proposed a face
recognition algorithm [16] using sparse representation, which offers
very competitive performance for face recognition. Moreover, sparse
representation is also employed for scene, object and pattern classifi-
cation in [17], [18], [19]. Based on the idea of sparse representation
for objection classification and identification, we propose a video
based vehicle identification framework in this paper. The constructed
system was designed and tested under a realistic setup in contrast of
the aforementioned limitations in the previous research.

The main contributions and accomplishments of our proposed
system are in the following:

1) We use video cameras to capture the critical information of
vehicles for the purpose of vehicle tracking when they enter
the state, and use additional video cameras to track their routes.
Unlike [14], [15], our system does not need specially designed
hardware or the calibrated cameras. Moreover, the cameras can
be placed at the side of highway, which makes our system
easier to deploy.

2) We treat the problem of vehicle identification from different
video sources as a signal reconstruction out of multiple linear
regression models and use rising theories from an emerging
signal processing area — compressive sensing to solve this
problem. By employing a Bayesian formalism to compute the
1* minimization of the sparse weights, the proposed framework
provides new ways to deal with three crucial issues in vehicle
identification: feature extraction, online vehicle identification
database building, and robustness to occlusion and misalign-
ment. For feature extraction, we use the simple down-sampled
features which offer good identification performance as long as
the features space is sparse enough. The theory also provides
a validation scheme to decide if a newly entering vehicle has
been already included in the database. Moreover, by taking
advantages of down-sample based features, one can easily
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introduce features of newly entering vehicles into the vehicle
identification database without using training algorithms, e.g.
PCA [9]. Finally, Bayesian formalism provides a measure of
confidence of each sparse weight.

3) Different from previous research [12], [13], [14], [15], where
only about 100 vehicles were used for testing and the testing
databases were highly overlapped, we conduct extensive exper-
iments on different types of vehicles on interstate highways to
verify the efficiency and accuracy of our proposed system. In
our experiments, more than 1200 vehicles were used for testing
and the overlap rate of the testing databases are less than 48%.
The results show that the proposed framework works well on
all kind of vehicles.

II. SYSTEM ARCHITECTURE
A. System Overview

Our vehicle identification system is able to detect, track and
identify each vehicle and transmit vehicle information to a service
center for further route tracking and other traffic monitoring tasks.
The system includes three main components: video cameras, a service
center, and clients. Video cameras are used to gather the traffic in-
formation including environment conditions, illumination conditions,
and vehicle information. In addition, there are several parallel video
cameras which are setup along the side of highway. These video
cameras should be reliable, network accessible, of high resolution and
high speed. We propose to use the Axis 223M network cameras. The
service center component, the most critical part, collects the images
from video cameras and employs our vehicle identification algorithm
to achieve the identification results. The clients are terminals that
query the identification results from the service center and produce
reports of desired statistics and routing information.

B. Process Flow

The process flow for the video camera feeds used for vehicle
identification is shown in Fig.l. Each video feed is sent to the
service center for further processing, eg. the i-th video camera V C(7)
in Fig.1. At the service center, the images from the video camera
are processed by the video processor module, which performs fore-
ground/background (FG/BG) detecting, blob detecting, blob tracking,
moving direction and speed detecting to extract features contributing
to a unique vehicle ID. Then these vehicle IDs from different video
cameras will be saved into a database with corresponding indices.
When a vehicle ID, eg. the vehicle ID from V C(j), is requested by
the client, the given vehicle information of V' C'(5) will be compared
with other VC databases VC(1),...,VC(m) except VC(j), where
m denotes the total number of VCs. If a corresponding ID is found
in VC(k), k # 7, it will report that this vehicle was captured in the

k-th VC, otherwise, it will report —1, which means that this vehicle
has not been captured by any VCs before.

III. VIDEO BASED VEHICLE IDENTIFICATION
A. Vehicle Detecting and Tracking

Vehicle detecting and tracking is the first stage for any further
identification processing. The four main components in our vehicle
detecting and tracking scheme are shown as the video processing
section in Fig. 1. 1) FG/BG Detecting: we adopt the approach in
[2], which provides an adaptive background mixture model for real-
time tracking by modeling the values of any pixel as a mixture
of Gaussians. This method is robust for lighting changes, tracking
through cluttered regions, slow-moving objects and so on. 2) Blob
Detecting: our blob detector is implemented based on [20] to detect
any newly entering object in each frame using the output from
the FG/BG estimation module. 3) Blob Tracking: the Blob tracking
module provides a way to track blobs from the current frame to
the next frame [4]. 4) Moving Direction and Speed Detecting: it
accomplished by using optical flow estimation [21], which tries to
calculate the motion between two video frames at times ¢ and ¢ + 7.
In our scheme, we use the blobs with the same index in different
video frames to calculate the optical flow.

The aforementioned algorithms offer high sensitivity for blob
detecting and tracking, however, the false positive rate could be high
due to clutter from the motion of leaves and grass. Moreover, we
may only be interested in one direction of traffic flow. To tackle
these issues, we utilize the following filters to exclude these unwanted
blobs.

1) Blob histogram (BH) filter: excludes blobs where the number
of observations from different video frames for each given blob
ID is less than 7py times, where 7py is a predetermined
threshold.

2) Motion distance (MDs) filter: excludes blobs whose moving
distance is less than a given threshold 7asps (in pixels).

3) Motion direction (MDr) filter: excludes blobs whose motion
direction are not the same as the pre-assigned direction 7aspr
(right, left, up, down and etc.).

B. Vehicle Identification via Sparse Representation and Bayesian
Formalism

A basic problem in vehicle identification is to determine if a newly
entering vehicle has already been registered in a database or not
and to find a corresponding vehicle ID if such a record exist. The
core idea of the proposed vehicle identification algorithm is based on
sparse representation, where a similar idea was used in [16] for face
recognition.

1) Sparse Representation of a Vehicle: Before generating a sparse
representation for a vehicle and finding its corresponding vehicle
ID, we will first arrange the database into matrices, which are built
using labeled training samples from M different vehicles. Here we
assume that k; denotes the number of training images for the ¢-
th vehicle ID, where ¢« = 1,..., M, and k = ki1 + k2 + ---kum
denotes the number of images in the database. Then, we reshape
each w X h image into a column vector v € R®, where ¢ = wh;
the k; training images from the ¢-th vehicle ID constitute the
columns of a matrix ®; = [vi1,vi2,...,Vik] € Re*Fi: all
k images from the database are combined to form a new matrix
o = [‘131, Do, ... s q>]w] = [1/1,1, V1,2, 4y VM,kM] S RCXk.

For a newly entering vehicle v € R, if sufficient training samples
in the database share the same feature as the incoming vehicle, (e.g.
this happens when the incoming vehicle was captured previously,



let say, with a vehicle ID %), then the vehicle can be approximately
represented as the linear combination of the training samples in ®;

y=P:0 =0;1vi1 +0i2vi2+ -+ 0k, Vi, (1)

where 0 = [97',71, 91'72, ey Oi,ki]T and 01',]' c R,j =1,2,..., k;.

However, we do not know the identity of the incoming vehicle at
the beginning. Fortunately, we can instead represent the incoming
vehicle y € R® using the entire set of images in the database
with relatively small increase in computation complexity. The linear
combination of all the training samples is written as

y=dxs =[O, P2,..., Pur]zs 2

where with a high probability, zs=[0,...,0,0;1,0:2,...,0;k,;,
0,..., O]T € RF is a coefficient vector which just has nonzero entries
for those associated with the ¢-th vehicle ID.

In order to find x5 which can accurately determine the identity of
the incoming vehicle, we need to solve the linear equation y = ®x. In
general, measurement data may be noisy, so y may not be represented
as the sparse combination of training samples exactly. Thus Eq. (2)
will be rewritten as:

y=dx; + 1., 3)

where Y. € R is noise and has a bounded energy || Y]]z < e.
Nevertheless, this is a underdetermined equation and it does not have
a unique solution x,. To solve the sparse solution x5 without NP-
hard, it turns out to be a /*-norm minimization problem

2 = argmin||z||;  subject to [Pz — yll2 <e. 4)

2) Sparse Solution via Bayesian Formalism: To find the sparse
solution for the /*-norm minimization problem, numerous methods
have been proposed, such as Matching Pursuit (OMP) [22], LASSO
[23], Interior-point Methods [24], SAMP [25] and Gradient Method
[26]. However, the above methods only provide approximate sparse
solutions and do not tell how likely the given solutions are optimum.
Therefore, we will use Bayesian formalism instead which returns
both a sparse solution x and the probability information indicating
the uncertainly of the solution from the actual sparse . Our approach
is based on [27] by extending Tipping’s Relevance Vector Machine
(RVM) theory [28].

First, we assume that x is the sum of two parts x;, and z. (so,
T = xp + x), Where x € R is the vector composed of nonzero
entries only at the L largest coefficients of x, and z. € R* is the
vector composed of nonzero entries only at the rest of the coefficients.
Moreover, since we assume that measurements can be noisy as in
Eq.(3), the vector corresponding to a vehicle y is rewritten as:

y=0x+Y, = Prp+Px+T, = Pap+Tc+T, = Pap+ 7T (5)

where Y. = ®x.. Using the Central-Limit Theorem [29], we assume
that both T, and T, are zero mean and approximately Gaussian
distributed, then T = Y. + T, can be approximated as a Gaussian
noise with zero mean and unknown variance o2. Then the Gaussian
likelihood is given by

. 1
p(yl|zs, 0°) = (2m0°) /Qexp(—ﬁﬂy — ). (6)

Given ¢ and y, the problem now is to estimate the sparse vector
xp and the noise variance o2. By Bayes’ rule, we have

p(y|$b7 0'2)]7(33177 02)
p(y) '

Note that z;, is sparse and can be modeled by a Laplace distribution
[30]. However, the Laplace prior is not conjugate to the Gaussian
likelihood and thus the inference problem can not be written in
closed-form [30]. Thus instead of Laplace prior, we will perform

(O]

p(xb7 02‘y) =

a hierarchical sparseness prior [28] which has similar properties as
the Laplace prior and thus allows convenient conjugate exponential
analysis on xp. Then, based on the priors defined according to [28],
the posterior can be decomposed as:

Pz, a, 0%|y) = plasly, a, 0*)p(a, o?Jy), (8)

where « is a hyperparameter. The first term p(xsly, o, 02) finally
can be expressed analytically as:

2
P\Y[Ty, 07 )P(Tp| ¥

plasly, @, 0%) = PO )
plyla, o?)

1
= (am)~ 4022 2exp {2y = ) TE - )}

. (©)]

with the covariance and mean
Y =(c20Td+ A",

_ (10)
p=o 50’y
respectively, where A = diag(ao,aa,...,ax). Maximizing the
second term p(c, o|y) is equal to maximizing the term p(y|c, o2)
since p(c) and p(c?) are uniform hyper-priors, which is given by:

p(ylor,02) = / p(ylzs, o?)p(epla)das,

=(2m)~ /262 f pA~ T |71/2 an

1
exp {—in(a% + <1>A—1<1>T)—1y} ,

where estimation of these hyperparameters « and o2 can be achieved
by employing the Type-II maximum likelihood method which is also
referred to as the “evidence for the hyper-parameters”[28].

3) Identification Based on Sparse Representation: Before identi-
fying an incoming vehicle, first, we need to use the information of
sparse representation to decide if the test object is a vehicle, and
if the entering vehicle corresponds to one of the vehicle IDs in the
database.

For each estimated sparse representation Z, the entries of coef-
ficient vector & distribute in two different ways: a). most nonzero
entries concentrate on one vehicle ID, and b). all nonzero entries
spread widely among multiple vehicle IDs or the entire database. The
first case implies that the incoming vehicle is likely to correspond to
the vehicle ID on which non-zero entries concentrate; whereas the
second case indicates that the feature information of the incoming
vehicle is not in the database. Based on the above observation, we
adopt the sparsity concentration index (SCI) to determine if a vehicle
has been captured before [16]. The SCI of a coefficient vector = € RF
is defined as

_ M -max;||0; (z)||1/||=]l1 — 1

SCI(x) V1

12)

€ [0,1],

where §;(z) € R is a vector whose coefficients are only associated
with the i-th vehicle ID of vector z.

Hence, for an estimated sparse representation & solved in Section
II-B1, if SCI(&) = 1, nonzero entries only concentrate on one
vehicle ID, and if SCI(Z) = 0, nonzero entries are spread uniformly
among all vehicle IDs. Given a threshold € € (0, 1), if SCI(&) > e,
the test vehicle will be considered as a “known” vehicle, otherwise
an “unknown” vehicle will be reported. For the former case, we still
need to determine the identity of the vehicle. We can achieve this
by comparing the residual errors corresponding to different vehicle
IDs. More precisely, denote §; = ®d;(Z1) which is the approximate
representation obtained by using only the entries associated with the
i-th vehicle ID. Intuitively, we assign the incoming vehicle y to the
ID with the best approximation. This corresponds to the minimum
residual error between y and g; given by

mini=17“. ’]\/[T'i(y) = mini=17“. ,]\/IHy — <1>5i(i‘1)||2 (13)



Now based on the sparse representation, SCI method for validation,
and residual identification, the algorithm procedure for vehicle iden-
tification can be summarized in the following:

1) Input: an arranged matrix from a database with M vehicles ® =
[®1,DPo,...,Pum] € R***an incoming vehicle represented by
y € R€, error tolerance ¢ > 0 and SCI threshold € € (0,1).

2) Normalize the columns of ® to have unit />-norm.

3) Solve the {*-minimization problem:
Z = argming||z|y  subject to [Pz —y

4) Compute SCI(#) = MMaX]os (@)l /=] € [0,1]. If
SCI(%) > €, go to step 5, otherwise return a report that the
incoming vehicle is not in the database.

5) Compute the residuals errors 7;(y) = ||y — ®d;(&)||2, for i =
1,..., M.

6) Output : id(y)= argmini—1.... m7i(y).

2<¢
1—1

C. Identification Based on Multiple Frames

As stated in Section III-B3, for further identification, SCI(%)
works like a filter for each frame to sift through any unknown
vehicle. However, in the vehicle identification problem, sometimes
the constraint SCI(Z) > e can not differentiate between the a known
and an unknown vehicle accurately. Fortunately, it is possible to take
advantage of the information from multiple frames to further improve
the identification accuracy. In this paper, we propose an additional
rule using the identification concentration index (ICI), which is based
on multiple frame validation, to improve the vehicle identification
accuracy.

Here we assume that there are F' number of frames which include
an incoming vehicle and d € R¥ is a vector to save the identified
IDs from F' frames. An average SCI(z) is obtained by SCI (%) =
+ ZZF:1 SCI(%;) and assuming that out of the F' frames, D number
of unique identified IDs are found. Then, considering the information
from all the F' frames, the proposed ICI is defined as:

_ D -max(p;(d))/[|d]o — 1

D1 (14)

ICI(d) € [0,1],
where p;(d) counts the existing number of j-th unique IDs in d,
j=1...,D;if D =1, ICI(d) = 1, since there is only one
vehicle ID. Similarly, if ICI(d) = 1, F frames identify one vehicle
ID, and if ICI(d) = 0, F frames are spread among all D number
of IDs. Then given a threshold ¢ € (0,1), an incoming vehicle is
considered as “known "if ICI(d) > ¢, otherwise it is considered as
“unknown .

Now we will introduce a method to combine SCI and ICI to
increase the accuracy of vehicle identification. Based on the pre-
vious algorithm for vehicle identification and the proposed ICI, the
algorithm procedure can be rewritten as follows:

1) Input: an arranged matrix from a database with M vehicles
S = [01,P,,...,Py] € R*®, an incoming vehicle y €
R, error tolerance £ > 0, SCI threshold ¢ € (0,1) and ICI
threshold ¢ € (0, 1), where the parameters € and ¢ can be tuned
by using an SVM classifier.

2) Normalize the columns of ® to have unit />-norm.

3) For all F' frames which include an incoming vehicle, solve the
[*-minimization problem:
£ = argming, |21
1,...,F.

4) Compute SCI(&;) = M'maXiH‘SiIE/}”l)l”l/”zlHl*l

subject to || ®x; — yill2 < &, 1 =

€ [0,1] for
each frame and then get SCI(2) = + ZlF:1 SCI(z;) for F
multiple frames.

5) Compute ICI(d) — D-maX(p;(d))/lldllo—1

D—1

€ [0,1].

6) If SCI(%) < ¢, and ICI(d) < ¢, where € € (0,1) and ¢ €
(0,1), return a report that the incoming vehicle is not in the
database, otherwise go to step 7. Note that the value of € and
¢ are tuned by using an SVM classifier.

7) Compute the residual errors 7;(y) = ||y — ®;(2)]|2, for ¢ =
1,..., M.

8) Output : id (y)= argmini—1,... a7 (y).

IV. RESULTS
A. Experiment Setup

First, we separate the video images captured from two video
cameras into two parts, one for training and the other for testing.
During the training phase, we extracted a 10 minute length of video
from video camera V(1) to build the vehicle database, which
included 291 captured vehicles and a total of 13,931 images (about
48 frames per vehicle). Then another 20 minute length of video with
601 captured vehicles (about 23,920 images) were extracted from
video camera VC(2), where 291 vehicles were also captured by
V(1) and the remaining 310 vehicles were not, and were registered
into the database using our proposed algorithm. Then the SCI and
ICI values were obtained after the registration and a ground truth
was generated manually. This information is used to train the SVM
classifier, which will be used to identify unknown vehicles based on
the SCI and ICI values. During the testing phase, we used another
10 minute length of video extracted from V' C(1) to build the vehicle
database, which includes 13,573 images for 287 vehicles. Then,
another 23,838 images of 608 vehicles from V C/(2) were used to test
the identification accuracy of our proposed algorithm. In this testing
phase, 287 vehicles appeared in the database and 321 vehicles were
not in the database '.

upport Vectors |
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Fig. 3. Trained SVM classifier using SCI and ICI, where 1 indicates correctly
identified vehicles and O indicates incorrectly identified vehicles

B. Vehicle Tracking and Detecting

In Fig. 2 , we present the blob detection results by using our
proposed vehicle detecting and tracking algorithms. The green box

!'A scalable solution can be achieved by restricting the number of frames per
unique vehicle in building the database. That is, when a vehicle is detected as a
known vehicle in the database, the newly captured frames of the vehicle might
not need to be added into the database. To increase robustness of the algorithm,
we could also discard some previously captured frames and replaced by the
newly captured frame. Please note that the overhead to build a database as
described above is very small. The complexity is dominated by the vehicle
identification step. Then the central service will output a response for any input
query. The selection of appropriate frames for database building depends on
the real situation. Moreover, we can easily split the above-mentioned tasks
into multiple pieces and process them in parallel, which can dramatically
accelerate the identification process.
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in the video frame indicates the location and the size of a moving
vehicle. Then each detected blob will be saved into the database
for registration . In this experiment, we achieved greater than 90%
accuracy for the blob detection. Moreover, we only focus on vehicles
that travel from left to right. In Fig. 2, we can see that vehicles not
moving to the right are filtered out by the MDr filter.

C. Video Based Vehicle Identification

In this section, results of the SVM classifier, identification with
different feature sizes, and a detailed example of vehicle identification
are presented.

1) SVM Classifier: In our experiment, we applied a sparse
representation-based Identification (SRI) algorithm to each test ve-
hicle image by solving the optimization problem in Eq. (4) with the
RVM. Two dimensional training data is used in the SVM classifier
which includes the SCI and ICI. Moreover, a 4th order polynomial
kernel function is used in the SVM classifier. Fig. 3 shows the
trained SVM classifier using the manually labeled data (SCI and
ICI) obtained from the training part, where the (green) star means
the vehicles appeared in both video cameras VC(1) and VC(2),
the (red) cross means that vehicles appeared in video camera V C'(2)
only, and the solid (black) line is the classification boundary obtained
from SVM classifier.

TABLE I
IDENTIFICATION ACCURACY USING SCI AND ICI WITH A FEATURE SIZE
OF 500

SP + SVM classifier output with SCI and ICI

# of acceptance # of rejection

(# of vehicles in database) (# of vehicles out of database)
248 (287) 360 (321)

# of positive # of false positive | # of negative | # of false negative

Identification accuracy | False positive rate
57.84% 283

False negative rate
7% 9.3

1%

We compare the classification performance by using differ-
ent kinds of data for SVM classifier, such as, SCI only, ICI
only and the combination of SCI and ICI. Before showing
the results, we will define some terminologies. In this paper,
“# of acceptance” is the number of vehicles that were accepted
by the SVM classifier and “# of rejection” is the number of ve-

hicles that were rejected by the SVM classifier. The identifi-

. . # of positive reports
cation accuracy (IA) is defined as # of vehicles in the database’

where “# of vehicles in the database” means vehicles that appeare
in both video camera VC(1) and VC(2). The false positive rate

. # of false positive reports .
(FPR) is defined as Fof Vehiclgs lfn the database” The false negative
0

. false negative reports
rate (FNR) is defined as # of vehicles 0u% of the gatabase,’ w!lere
“# of vehicles out of the database” means vehicles appeared in video
camera V C(2) only (see Table I as an example). Fig. 4 shows IA,
FPR and FNR by using different kinds of data in the SVM classifier.
We can see that using ICI only in the SVM obtains the best IA and
lowest FNR. However, the FPR of using ICI only is the highest.
Among SCI, ICI and the combination of SCI and ICI, SCI yields the

worst performance in terms of lowest IA and highest FNR. Moreover,

we can see that using the combination of SCI and ICI in the SVM
classifier can best leverage the performance of IA, FPR and FNR.
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Fig. 6. Identification accuracy, false positive and false negative rate with
different feature sizes.

2) Identification with Different Feature Sizes: In this section, we
compare IA, FPR and FNR with different feature sizes (pixels) of 30,
120 and 504. Here, we implement a down-sampling scheme for each
detected vehicle to get the feature image. The advantage of using
a down-sampled feature image is that each feature image can be
generated independently and requires less computation. Fig. 5 shows
an example of the different feature sizes. Furthermore, in Fig. 6, we
can see that IA increases as the feature size increases, while the FPR
and FNR decrease as the feature size increases. Thus, to obtain a
higher IA, we need a large feature image so that enough information

Vehicle from camera 1

An example of correct identification I

Vehicle from camera 1 Vehicle from camera 2

Fig. 8.

3) A Detailed Example of Identification: In this section, a detailed
identification example using a sparse representation-based algorithm
is presented. Fig. 7 and Fig. 8 show two correct identification results,
where the database was built by using the data from video camera
VC(1) and the data of the querying vehicle was obtained from video
camera V' C(2). In Fig. 7, although an occlusion (a pole) exists in the
image from the database, the proposed algorithm can obtain a correct
identification result. Moreover, Fig. 8 shows the case of a correct
identification using misaligned images from video camera V(1)
(database) and video camera V' C'(2) (querying data). The above two
cases demonstrate that the proposed algorithm is more robust with
respect to occlusion and misalignment.

Fig. 9 shows an incorrect identification result, where the two
vehicles from video camera V(1) and video camera VC(2) are
too similar to be discriminated by the proposed algorithm. However,
almost any video based identification algorithm suffers from this
difficulty. Thus, in this case, some additional information, such as the
license plate gained from an Automatic License Plate Recognition
system or Blue Tooth Traffic Detector system, could be used to
increase the identification accuracy.

An example of correct identification II
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Fig. 11. Residuals for a testing vehicle

Fig. 10 and Fig. 11 show the sparse coefficients and residuals
for a given test vehicle, respectively. In Fig. 10, we can see that
the magnitudes of some non-zero coefficients are much larger than
others. Moreover, the corresponding image IDs of these large non-
zero coefficients belong to the same vehicle in the database, which is
identical to the test vehicle. The error bar, another output of RVM, is
also shown in Fig. 10, which can be used to measure the confidence
of each coefficient. In Fig. 11, we can see that the residual between
a test vehicle and a vehicle in database reach the minimum value,
when the test vehicle and the vehicle in the database are identical.

D. Discussion

In this paper, we conducted extensive experiments to test the
proposed vehicle identification system. Our proposed system can
achieve about 57.84% identification accuracy, which is much better
than the previous results of 16.42% and 45% reported by [12] and
[13], respectively. Although, the identification accuracy found in our
experiment was lower than [15], our system did not require specially
designed hardware and top-down camera views as [15], which makes
our system easier for deployment. Moreover, vehicle databases used
in our experiment have a lower overlap rate of 48% and more than
1200 vehicles, which was 10 times larger than the number of the
previous research [12], [13], [14], [15]. Thus, our experimental results
may reflect a more realistic traffic condition, e.g. a higher probability
that two vehicles are not identical but have similar or the same color,
shape, etc (see Fig. 9). In our experiment, we found that most false
positive and false negative reports were caused by two vehicles which
are too similar to be discriminated between.
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